Innovative Fügetechnologien für Hochleistungskeramik

Mit einem neuartigen Laser-Fügeverfahren entwickelten Wissenschaftler des TU-Instituts für Energietechnik erstmals eine industrietaugliche Technologie zum Hochtemperaturlöten von SiC-Keramik. Hochleistungskeramik, wie z.B. Siliziumkarbid (SiC), verfügt über exzellente thermochemische sowie radiologische Eigenschaften. Die Potenzen dieses Werkstoffes blieben bislang jedoch weitgehend ungenutzt, da für das Hochtemperaturfügen verwendete Verfahren bisher nur unbefriedigende Ergebnisse erzielten.

Gemeinsam mit Partnern aus Industrie und Forschung eröffnen die Experten an der Professur für Kernenergietechnik der TU Dresden nunmehr ungeahnte Horizonte bei der Fertigung komplizierter Bauteile. Anspruchsvolle Konstruktionsteile, die sich aufgrund der Werkstoffeigenschaften nicht aus einem Stück fertigen lassen, können jetzt in einfacheren Einzelteilen hergestellt und anschließend nach der entwickelten Technologie miteinander verbunden werden. Damit ergeben sich völlig neue Anwendungsgebiete überall dort, wo an komplizierte Bauteile hohe Ansprüche (wie korrosionsbeständig, abriebfest, gasdicht, strahlenresistent) gestellt werden.

Innovativer Kern der auf dem Weltmarkt konkurrenzlosen Fügetechnologie aus Sachsen ist ein neues Laserverfahren, das den speziell entwickelten und patentierten Keramiklot CERALINK@ nutzt. Mittels Laserstrahlung wird das nichtmetallische Lot CERALINK@ lokal aufgeschmolzen und verbindet so bei idealer Benetzung beide Keramikteile. Infolge des örtlich begrenzten Energieeintrags kann die Schädigung thermisch empfindlichen Materials in Nahtnähe verhindert werden. Weitere Vorteile: Es werden extrem lange Prozesszeiten im Ofen vermieden, der Fügeprozess wird an freier Atmosphäre realisiert und erfordert eine Bearbeitungszeit im Sekunden- bis Minutenbereich. Die Korrosionsbeständigkeit ist bis zu einer Löttemperatur von 1850 Grad Celsius gegeben. Die Verbindung ist mechanisch fest und vakuum-gasdicht.

Mit dem Laser-Fügeverfahren verschlossene Behältnisse eignen sich für den sicheren Einschluss radioaktiver Materialien, so z.B. für Abfälle aus dem medizinischen Bereich und der Kernenergienutzung. Aber auch in der Automobil- und Chemieindustrie sind Anwendungen denkbar, wie die Nutzung der Forschungsergebnisse in der Hochtemperatur-Energietechnik und in weiteren High-Tech-Sparten. Zur Zeit prüfen Prof. Dr. Jürgen Knorr und sein Expertenteam den Einsatz ihres Verfahrens in der Luft- und Raumfahrt.

Entwickelt wurde die innovative Fügetechnologie Hand in Hand mit der Hochschule Mittweida und dem Unternehmen Technische Keramik GmbH Meißen. Das Sächsische Staatsministerium für Wissenschaft und Kunst und das Sächsische Staatsministerium für Wirtschaft und Arbeit haben die Forschungsarbeiten gefördert.

Media Contact

Birgit Berg idw

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer