Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D trifft FVK: Mehr Flexibilität für hochbelastete Bauteile

07.03.2016

Individualität und Anpassungsfähigkeit müssen zu Robustheit und Stabilität nicht im Widerspruch stehen: Produkte wie Sitzschalen für Automobile oder medizinische Prothesen, von denen beides verlangt wird, sollen dafür in Zukunft in einer Kombination aus 3D-Druck und Faserverbund-Technologie hergestellt werden.

Der 3D-Druck gewährleistet maximale Flexibilität für Form und Funktion des Bauteils, der Faserverbundkunststoff sorgt für die entsprechende Stabilität, auch unter hoher Belastung. Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen untersucht mit seinen Verbundpartnern das kombinierte Herstellungsverfahren jetzt im BMBF-geförderten Forschungsprojekt »LightFlex« und stellt erste Ergebnisse auf der Fachmesse JEC vom 8. bis 10. März 2016 in Paris dem Fachpublikum vor.


Generativ gefertigtes Demonstratorbauteil, das mit Faserverbundkunststoff gefügt wurde.

Bildquelle: Fraunhofer IPT

Spritzgussbauteile aus Kunststoff, die zur Verstärkung mit Faserverbundkunststoffen kombiniert werden, haben einen großen Nachteil: Sie lassen sich nur schlecht an individuelle Wünsche oder Bedürfnisse anpassen.

Da teure und unflexible Spritzgießwerkzeuge zum Einsatz kommen, ist die Fertigung in der Regel nur in Großserien erschwinglich. Auch spezielle Funktionalitäten oder Änderungen in der Bauteilentwicklung lassen sich nur durch aufwändige Nachbearbeitungsschritte einbringen. Die Herstellung von Kleinserien oder gar Prototypen scheitert deshalb an den hohen Kosten.

Das Fraunhofer IPT und seine Partner im Projekt »LightFlex« planen daher nun, für solche Anwendungsfälle die Spritzgusskomponente durch eine generativ gefertigte zu ersetzen: Durch den 3D-Druck lassen sich die Bauteile nahezu beliebig individualisieren und mit den gewünschten Funktionen versehen, bevor sie mit einem thermoplastischen Faserverbundkunststoff gefügt werden und so die erforderliche Belastbarkeit erreichen.

Um die Belastbarkeit der Bauteile zu optimieren werden für die FVK-Komponente sogenannte Organobleche aus unidirektionalen Halbzeugen verwendet. Anstelle von Standardware mit festgelegten Abmaßen kommen hier jedoch für den individuellen Anwendungsfall zugeschnittene Organobleche zum Einsatz, die auf einer vom Fraunhofer IPT aufgebauten Anlage endkonturnah gefertigt werden. Das minimiert Verschnitt und führt zu deutlichen Einsparungen bei den mit hohem Energieaufwand hergestellten Kohlenstofffasern. Die dazu verwendete Anlage hatte das Fraunhofer IPT bereits im Vorfeld im BMBF-geförderten Projekt »E-Profit« entwickelt.

Die Organobleche kombiniert das Fraunhofer IPT in einem Thermoforming-Prozess mit der 3D-gedruckten Stuktur. Das 3D-gedruckte Bauteil stellte der Projektpartner Wehl Group Sintertechnik GmbH aus Salach bereit.

Insgesamt umfasst das Projekt »LightFlex« die gesamte Prozesskette im Sinne einer vernetzten, adaptiven Produktion – von der Halbzeugherstellung durch das Institut für Kunststoffverarbeitung (IKV) in Industrie und Handwerk an der RWTH Aachen und weitere Partnern bis zur Besäumung mit dem Laserstrahl durch die Arges GmbH.

Auf der internationalen Fachmesse für Verbundwerkstoffe JEC World 2016 in Paris stellen die Partner die Fertigungsanlage sowie ein erstes Demonstationsbauteil, das mit der neuen Verfahrenskombination gefertigt wurde, den Messebesuchern vor.

Partner im Projekt »LightFlex – Photonische Prozesskette zur flexiblen, generativen, automatisierten und wirtschaftlichen Herstellung individuell angepasster hybrider Leichtbauteile aus thermoplastischem Faserverbundkunststoff«

- Adam Opel AG, Rüsselsheim
- AFPT GmbH, Dörth
- Arges GmbH, Wackersdorf
- Breyer GmbH Maschinenfabrik, Singen
- F.A. Kümpers GmbH & Co. KG, Rheine
- Fraunhofer-Institut für Produktionstechnologie IPT, Aachen
- Institut für Kunststoffverarbeitung (IKV) in Industrie und Handwerk an der RWTH Aachen
- KUKA Industries, Reis GmbH & Co. KG Maschinenfabrik, Geschäftsbereich Reis Extrusion, Merzenich
- Pixargus GmbH, Würselen
- Wehl Group Sintertechnik GmbH, Salach

Dieses Projekt wird mit Mitteln des Bundesministeriums für Bildung und Forschung
unter dem Förderkennzeichen 03XP0013 gefördert. Die Projektpartner danken dem BMBF für die Unterstützung.

Kontakt

Dipl.-Ing. Dipl.-Wirt. Ing. Henning Janssen
Fraunhofer-Institut für Produktionstechnologie IPT
Steinbachstraße 17
52074 Aachen
Telefon +49 241 8904-261
henning.janssen@ipt.fraunhofer.de
www.ipt.fraunhofer.de

Diese Pressemitteilung und ein druckfähiges Foto finden Sie auch im Internet unter
www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/20160304lightflexjec.html

Weitere Informationen:

http://www.ipt.fraunhofer.de

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019
16.10.2019 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Fraunhofer FHR präsentiert Hochfrequenztechnologie für autonomes Fahren auf dem VDI Kongress ELIV 2019 in Bonn
14.10.2019 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Familienunternehmer setzen eher auf Evolution als auf Disruption

16.10.2019 | Wirtschaft Finanzen

Wie ein infizierter Knochen besser heilt

16.10.2019 | Förderungen Preise

Rätsel gelöst: Das Quantenleuchten dünner Schichten

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics