Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zielsichere Navigation durchs Gefäßsystem

02.07.2019

Fraunhofer MEVIS entwickelt intelligenten Katheter

Mit jährlich weltweit sechs Millionen Eingriffen zählen Gefäßkatheter-Interventionen zur medizinischen Routine. Dabei wird ein dünner, biegsamer Draht zur Navigation der Katheter in die Adern eingeführt, etwa um Gefäßstützen (Stents) einzusetzen oder Blutgerinnsel zu beseitigen. Um den Katheter gezielt durch die Gefäße zu navigieren, werden die Patienten während des Eingriffs mit Röntgenstrahlung durchleuchtet.


Wird der intelligente Katheter in das Gefäßsystem eingeführt, kann der Mediziner jetzt die Position in dem virtuellen 3D-Modell des Patienten beobachten, wie Torben Pätz und Jan Strehlow hier demonstrieren.

© Fraunhofer MEVIS

Der Nachteil: „Patienten und Ärzte sind dabei einer nicht zu vernachlässigenden Strahlendosis ausgesetzt“, sagt Dr. Torben Pätz, Mathematiker am Fraunhofer-Institut für Digitale Medizin MEVIS in Bremen.

„Außerdem zeigen die Röntgenbilder kein 3D-Bild, sondern nur eine 2D-Projektion, wodurch sich der Katheter nicht immer genau lokalisieren lässt.“ Um Abhilfe zu schaffen, entwickelt Fraunhofer MEVIS ein System namens IntelliCath (Intelligent Catheter Navigation).

Das Prinzip der neuen Methode: Der Katheter wird mit einer speziellen Glasfaser ausgerüstet, bestückt mit winzigen „Spiegeln“. Wird Laserlicht durch diese Faser geschickt, reflektieren die Spiegel einen Teil des Lichts. Das Entscheidende: Sobald die Glasfaser gebogen wird, verändert sich die Farbe des reflektierten Lichts, was durch Sensoren erfasst werden kann. „Aus dem Signal dieser Sensoren lässt sich auf Stärke und Richtung der Biegung schließen“, erläutert Pätz. „Die Faser weiß gewissermaßen, wie sie geformt ist.“

Um damit einen Katheter zielsicher durchs Gefäßsystem navigieren zu können, braucht es allerdings noch ein weiteres Element: Vor dem Eingriff erfolgt ein CT- oder MR-Scan des Patienten. Ausgehend von den Bilddaten rekonstruiert eine Software ein 3D-Modell des Gefäßsystems und stellt es auf einem Monitor dar. In dieses Modell sollen während der Katheter-Intervention die Live-Daten aus der Glasfasernavigation eingespeist werden. Als Ergebnis würde der Arzt auf dem Bildschirm beobachten können, wie sich der Katheter durch das Gefäßlabyrinth bewegt – in Echtzeit und 3D.

Die Machbarkeit des Verfahrens konnten die MEVIS-Fachleute bereits an einem Prototyp nachweisen. „Wir haben mehrere Silikonschläuche zu einem gewundenen Labyrinth zusammengesteckt“, erzählt Torben Pätz. „In dieses Labyrinth haben wir unsere Glasfaser-Katheter eingeführt.“ Auf dem Bildschirm ließ sich dann in Echtzeit lokalisieren, wo sich der Katheter gerade befand – und zwar bis auf fünf Millimeter genau. Die Forscher haben hierzu bereits zwei Patente eingereicht.

Mehrere Medizintechnik-Unternehmen sind ebenfalls an der Sache dran, aber: „Oftmals versuchen diese mit einem hohen technischen Aufwand, die gesamte Form des bis zu zwei Meter langen Katheters zu rekonstruieren“, so Pätz. „Unser Algorithmus hingegen kommt bereits mit einem Bruchteil der Daten aus, um den Katheter in dem ja bereits bekannten Gefäßsystem zu lokalisieren.“ Die Folge: Der MEVIS-Ansatz verspricht eine preiswertere Technik ohne teure Spezialfasern und Auswertesysteme und ist gleichzeitig robuster gegenüber Fehlerquellen als die bisherigen Verfahren.

Als nächstes werden die Fachleute ihr IntelliCath-System an einem Ganzkörper-Phantom des menschlichen Gefäßsystems testen, sowie an einer Schweinelunge erproben. 2020, gegen Ende der derzeitigen Projektphase, wird ein Prototyp fertig sein, der die Grundlage für eine klinische Studie bildet.

Zusätzlich entwickeln Pätz und sein Team eine akustische Rückmeldung, damit der Arzt während des Eingriffs nicht ständig auf den Bildschirm schauen muss. Die Idee: Verschiedenartige Hinweistöne signalisieren, wohin der Katheter bei der nächsten Gefäßabzweigung navigiert werden muss und wie weit diese entfernt ist. „Das ist ähnlich wie die Einparkhilfe beim Auto“, erläutert Pätz. „Da erhält man ebenfalls einen akustischen Hinweis, wie weit das nächste Hindernis entfernt ist.“

IntelliCath ist Teil eines umfassenderen Projekts namens SAFE (Softwareunterstützung und Assistenzsysteme für minimal-invasive neurovaskuläre Eingriffe). Dabei geht es darum, die Röntgennavigation bei Katheter-Interventionen zu vereinfachen und dadurch die Mediziner zu entlasten. Beispielsweise soll eine Software Zusatzinformationen, die zuvor aus CT- oder MR-Aufnahmen extrahiert wurden, in das Röntgen-Livebild einblenden.

Außerdem soll eine KI automatisch die Position des Katheters erkennen. Die Projektpartner der Fraunhofer Projektgruppe für Automatisierung in der Medizin und Biotechnologie des Fraunhofer IPA arbeiten daran, den Kathetereingriff per intelligentem Assistenzsystem zu unterstützen – von der Hilfestellung bei der Handhabung des Katheters bis hin zur vollautomatischen Navigation. SAFE ist ein Fraunhofer-Projekt mit einem Finanzvolumen von 2,4 Millionen Euro. Es startete im April 2017 und wird im September 2020 enden.

Weitere Informationen:

https://www.mevis.fraunhofer.de/de/press-and-scicom/press-release/2019/zielsiche...

Bianka Hofmann | Fraunhofer-Institut für Digitale Medizin MEVIS

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Krebs mit Sauerstoff sichtbar machen
19.02.2020 | Deutsches Krebsforschungszentrum

nachricht Mit Lasertechnik die Krebstherapie verbessern
13.02.2020 | Leuphana Universität Lüneburg

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics