Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschall versorgt aktive Implantate drahtlos mit Energie

04.10.2016

Aktive Implantate, wie zum Beispiel Electroceuticals, wirken im Gegensatz zu Medikamenten lokal, haben weniger Nebenwirkungen und funktionieren direkt wie der Körper selbst – durch elektrische Signale. Fraunhofer-Wissenschaftler stellen auf der Medica in Düsseldorf eine Technologieplattform vor, die aktive Implantate via Ultraschall drahtlos mit Energie versorgt (Halle 10, Stand G05). Im Visier der Experten: Volkskrankheiten wie Bluthochdruck, Diabetes oder Parkinson.

Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT in Sulzbach (Saarland) haben einen Demonstrator entwickelt, der aktive Implantate drahtlos via Ultraschall mit Energie versorgt. Die Technologie ist eine Alternative zur Energieversorgung mit Batterie und Induktion.


Prinzipieller Aufbau der ultraschallbasierten Energieversorgung und Kommunikation.

© Fraunhofer IBMT

Sie kommt platzsparend ohne integrierte Batterien aus und ist effizienter als eine induktive Energieübertragung: Ultraschallwellen dringen leichter durch das Metallgehäuse der Implantate als elektromagnetische Wellen – die Reichweite im Körper ist größer. Die Ultraschallwellen können auch Informationen bidirektional übertragen – zum Beispiel die Temperatur des Implantats oder Angaben zur Art und Stärke der elektrischen Stimulation.

Bluthochdruck, Diabetes oder Parkinson behandeln

Der als universal nutzbare Technologieplattform konzipierte Demonstrator kann für unterschiedlichste Anwendungen und Modellvarianten angepasst werden: Seine Stromversorgung funktioniert mit oder ohne Akku, er lässt sich für unterschiedlichste Anwendungen aktiver Implantate konfigurieren. Beispiele sind Volkskrankheiten wie Bluthochdruck, Diabetes oder Parkinson.

Die Forscher haben ein komplettes System entwickelt – den Sender außerhalb des Körpers und den Empfänger direkt im Implantat. Sie zeigen den Demonstrator – der die vorgegebenen Grenzwerte für Ultraschallbehandlungen am menschlichen Körper deutlich unterschreitet – auf der Messe Medica, dem Weltforum der Medizin, vom 14. bis 17. November 2016 in Düsseldorf (Halle 10, Stand G05).

»Auf der Messe suchen wir nach Industriepartnern, um auf Basis unserer Technologieplattform gemeinsam ein konkretes Produkt zu entwickeln. Technologisch könnte dies bereits innerhalb eines Jahres machbar sein«, vermutet Andreas Schneider, Leiter der Arbeitsgruppe »Aktive Implantate« am IBMT. Im Mai 2016 schätzte das Marktforschungsunternehmen BBC Research den Markt für mikroelektronische medizinische Implantate auf 24,6 Milliarden US-Dollar und prognostizierte ein Wachstum auf 37,6 Milliarden US-Dollar bis 2021 – bei einer durchschnittlichen jährlichen Wachstumsrate von 8,8 Prozent.

Ultraschallwellen sind mechanische Wellen. Sie werden von piezoelektrischem Material in Sender und Empfänger ausgelöst beziehungsweise aufgenommen. Die piezoelektrischen Wandler verformen sich unmerklich beim Anlegen einer Spannung. Die Verformung löst eine mechanische Welle aus, ähnlich den Schallwellen einer Lautsprecherbox. Diese treffen auf den piezoelektrischen Empfänger. Die Wellen verformen auch diesen, nur mit dem Unterschied, dass hier genau der umgekehrte Effekt entsteht: Die Verformung produziert elektrischen Strom.

Alternative zu Medikamenten

Aktive Implantate sind in der Lage, bestimmte Körperfunktionen eines erkrankten Menschen zu unterstützen und Funktionsstörungen zu kompensieren. Meist knapp unter der Haut eingepflanzt können sie durch elektrische Stimulationen den Herzrythmus kontrollieren (Herzschrittmacher), Sinneseindrücke unterstützen – zum Beispiel Retina- und Chochleaimplantat – sowie Prothesen steuern (Handprothese). Weitere komplexe Aufgaben der wenige Zentimeter großen Medizintechnik sind: Dosierung von Medikamenten oder Unterstützung des Knochenwachstums.

»Unser Körper funktioniert über elektrische Signale. Das stellt ein aktives Implantat nach«, erklärt Schneider. Peter-Karl Weber aus der Hauptabteilung »Ultraschall« des IBMT ergänzt: »Über Medikamente können zum Teil Verbesserungen erzielt werden. Der Nachteil: Sie wirken nur indirekt und belasten den gesamten Körper. Aktive Implantate wirken direkt und lokal dort, wo sie benötigt werden.« Ziel der Wissenschaftler ist es, dass in naher Zukunft auch Volkskrankheiten wie Bluthochdruck oder Diabetes auf diese Weise behandelt werden können.

»Dafür benötigen wir mehr leistungsstarke, miniaturisierte und gleichzeitig robuste Technologieansätze für aktive Implantate. Wir haben gezeigt, dass Ultraschall ein neuer Weg zur Energieversorgung von aktiven Implantaten ist«, sagt Weber.

Die prinzipielle Bauweise aktiver Implantate hat sich in den letzten Jahren kaum ver-
ändert. Genau wie die ersten kommerziellen Herzschrittmacher bestehen sie aus elektronischen Bauteilen, die hermetisch gekapselt in einem metallischen Titangehäuse verschweißt sind. Über elektrische Durchführungen im Titangehäuse und Kabelverbindungen erhalten die direkt im Herzmuskel sitzenden Elektroden ihre elektrischen Impulse. Grundsätzliches Problem: die Energieversorgung. Batterien haben den Nachteil, dass sie viel Platz benötigen – oft die Hälfte des Implantats – und regelmäßig operativ ausgetauscht werden müssen.

Als drahtlose Alternative hat sich die Induktion etabliert. Hier übertragen elektromagnetische Wellen Energie und Informationen. Zwei Spulen wandeln Strom in Magnetfelder und wieder zurück um. Der Nachteil: Die elektromagnetischen Wellen werden vom metallischen Implantatgehäuse abgeschirmt. »Ähnlich wie Blitze bei einem Faradayschen Käfig«, erklärt Schneider. Die Spulen müssen deshalb aus dem Gehäuse heraus gelegt werden. »Bei unserer Technologie liegt der Empfänger der Ultraschallwellen innerhalb des hermetischen Implantatgehäuses, direkt an der Gehäusewandung. Implantatwand und Empfänger bilden ein homogenes System, das es erlaubt, Ultraschallwellen zu empfangen und abzustrahlen«, schildert Schneider.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2016/oktober/ultraschall...

Britta Widmann | Fraunhofer Forschung Kompakt

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics