Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Präzise Diagnose im Blaulicht

26.09.2012
Laser haben in der Medizin längst ihren Platz erobert. Sie veröden unliebsame Haarzellen, brennen Leberflecken weg, korrigieren Sehschwächen und härten Zahnfüllungen aus. Bald wird gebündeltes Licht auch die Diagnostik auf den Punkt bringen.

Im Rahmen des Einstein-Forschungsvorhabens „HautScan“ entwickelt TU-Professor und FBH-Direktor Prof. Dr. Günther Tränkle mit seinem Team rund um PD Dr. Bernd Sumpf vom Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) eine nichtinvasive optische Methode zum Nachweis von Substanzen auf der Haut – mittels Raman-Spektroskopie.

Das notwendige medizinische Know-how bringt Prof. Dr. Dr. Jürgen Lademann, Hautphysiologe an der Charité, ein. „Im Projekt bringen wir technische und medizinische Expertise zusammen“, erklärt Günther Tränkle, „die Rückmeldungen aus der Charité helfen uns, die notwendigen Anpassungen technisch umzusetzen.“ Bernd Sumpf, der am FBH für die Lasersensorik verantwortlich ist, ergänzt: „Zum FBH-Part gehört die Lichtquelle, basierend auf einem Diodenlaser, und das komplette optische System.“ Der Messkopf wird nicht viel größer als ein Laserpointer sein. Auch die derzeitigen Laborspektrometer sollen schrumpfen und portabel werden.

Konkreter Anlass war der Wunsch frühzeitig und vor Ort eine schwere Nebenwirkung des Chemotherapeutikums Doxorubicin zu erkennen. Brust- oder Knochenkrebs-Patienten leiden oft unter dem schmerzhaften Hand-Fuß-Syndrom. Es entsteht, weil ein Teil des Wirkstoffs mit dem Schweiß durch die Haut austritt. Durch Kontakt mit Luftsauerstoff entstehen aggressive freie Radikale, die wieder in die Haut eindringen und sie zerstören. Doxorubicin wird das erste Ziel, aber nicht das einzige im Laserfokus sein. Denn mittels Raman-Spektroskopie lassen sich viele Substanzen präzise analysieren.

Monochromatisches Licht wird – je nach Molekülaufbau der Substanz, auf die es eingestrahlt wird – unterschiedlich zurückgestreut. Das Resultat ist ein Muster aus Raman-Signalen, so einzigartig wie ein Fingerabdruck.

Am FBH arbeitet man schon länger an maßgeschneiderten Lichtquellen für die Sensorik. Dennoch gibt es Hürden. Zum einen können Raman-Linien von einem um mehrere Größenordnungen stärkeren, breiten Fluoreszenzspektrum überdeckt werden. Um die schwachen Signale herauszufiltern, regen die Forscher die Probe mit zwei dicht beieinanderliegenden Frequenzen an. Die Fluoreszenz ändert sich dadurch kaum – aber die Raman-Linien verschieben sich und lassen sich vom Störlicht trennen.

Zum anderen muss die passende Lichtquelle designed werden. Halbleiterlaser mit den für Doxorubicin idealen Wellenlängen im blauen Spektralbereich (488/515 nm), die zudem die erforderlichen Eigenschaften für die Raman-Spektroskopie – insbesondere für portable Messgeräte –bieten, gibt es noch nicht.

„Wir gehen deshalb über nicht-lineare Frequenzkonversion“, erklärt Sumpf. Vor einen Infrarotlaser (978/1030 nm) wird ein Kristall gesetzt, der die Wellenlänge halbiert. Bevor das Licht auf diesen Kristall trifft, muss es über ein Mikrosystem aus Linsen in einen Wellenleiter „eingefädelt“ und das blaue Licht nach dem Kristall in einer miniaturisierten Transferoptik auf die Probe fokussiert werden: zu einer Brennfleckgröße, die der Arzt braucht, um die Haut des Patienten zu untersuchen. „Dazu muss das zurückgestreute Raman-Licht wieder eingesammelt und an den Detektor zurückgeführt werden“, erläutert Sumpf. Bei einer Lasergröße von 2 x 0,5 mm ist das Feinstarbeit. Justiert wird unter dem Mikroskop.

Die Forscher können dabei auf Erfahrungen aus einem Vorläuferprojekt zurückgreifen. FreshScan zielte allerdings nicht auf Patienten, sondern auf Schweineschnitzel, wie Sumpf lächelnd anfügt. Ein System, das auf FBH-Laserquellen basiert, überprüft inzwischen mittels Raman-Spektroskopie erfolgreich die Fleischqualität in der Lebensmittelproduktion.

In anderthalb Jahren will das FBH mit seinem Part fertig sein und die Ergebnisse gemeinsam mit Prof. Lademann validieren. Sumpfs Vision geht jedoch bereits weiter in die Zukunft. Der regelmäßige HautScan könnte zur Routine werden – für Chronisch-Kranke wie für Gesundheitsbewusste. Sekunden nach dem Blaulichtscan flitzen die Daten per Bluetooth ins Smartphone und via Email weiter zum Raman-Center. Postwendend kommt ein „o. B.“ zurück oder im Ernstfall gleich ein Hausarzttermin.

Petra Immerz
Communications & Public Relations Manager
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
www.fbh-berlin.de
http://twitter.com/FBH_News
Hintergrundinformationen - das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesellschaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizintechnik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satellitenkommunikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikrowellenplasmaquellen mit Niederspannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 240 Mitarbeiter und hat einen Etat von 22 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Krebs mit Sauerstoff sichtbar machen
19.02.2020 | Deutsches Krebsforschungszentrum

nachricht Mit Lasertechnik die Krebstherapie verbessern
13.02.2020 | Leuphana Universität Lüneburg

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics