Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mini-Sensor misst Magnetfelder des Gehirns

29.05.2012
Neues optisches Magnetometer besteht Praxistest in der PTB und beweist sein Potenzial für preisgünstigere Gehirnstromuntersuchungen für die neurologische Diagnostik und die Grundlagenforschung.

Ein neuer Magnetfeldsensor in Würfelzuckergröße soll in Zukunft die Messung von Hirnaktivität erleichtern. Im „magnetisch stillsten Raum der Welt“ der Physikalisch-Technischen Bundesanstalt (PTB) in Berlin hat der Sensor jetzt eine wichtige technische Prüfung bestanden: Mit ihm konnten erfolgreich sowohl spontane als auch gezielt hervorgerufene Magnetfelder des Gehirns gemessen werden.


Magnetfeldsensoren von der Größe eines Stückes Zucker mit elektrischen und optischen Zuleitungen.
Foto: PTB/NIST

Damit beweist er sein Potenzial für medizinische Anwendungen, wie z.B. die Untersuchung der Gehirnströme beim Lösen kognitiver Aufgaben als Basis einer neurologischen Diagnostik. Der entscheidende Unterschied zur bisher genutzten Kryoelektronik ist das Wegfallen einer aufwendigen Kühlung, da die vom US-amerikanisches Institut NIST gefertigten optischen Magnetometer bei Raumtemperatur arbeiten. Die Ergebnisse sind in einer aktuellen Ausgabe der Fachzeitschrift Biomedical Optics Express veröffentlicht.

Chip-scale Atomic Magnetometer (CSAM) nennen die Wissenschaftler den hochempfindlichen Magnetfeldsensor, der neben der Mikrooptik ein Gas aus Rubidium-Atomen enthält, deren Spinänderung für die Messung genutzt wird. Sie können direkt am Körper angebracht werden. Entwickelt wurde der CSAM in vielen Jahren gezielter Forschungs- und Entwicklungsarbeit am NIST (National Institute of Standards and Technology), dem US-amerikanischen Schwesterinstitut der PTB.

Die PTB bot den US-Kollegen einzigartige Voraussetzungen für einen Praxistest. Dazu zählen unter anderem der magnetisch ruhigste Raum der Welt und eine wissenschaftliche Mannschaft, die in zahlreichen Forschungsprogrammen große Erfahrung bei der Messung biomagnetischer Felder des Menschen mittels SQUIDs erwerben konnte.

Bisher werden für die Messung extrem schwacher Magnetfelder kryoelektrische Sensoren, sogenannte supraleitende Quanteninterferometer, kurz SQUIDs, verwendet. Sie gelten als eine Art „Goldstandard“ im Bereich der Magnetfeldmessung. Ihr Nachteil: Erst bei extrem tiefen Temperaturen von –269 Grad Celsius arbeiten sie optimal und ihre Anwendung ist daher teuer und unflexibel. Die Nutzung von CSAM-Sensoren könnte das ändern. Zwar ist ihre Empfindlichkeit noch etwas geringer als die der SQUIDs, doch haben sie das Potenzial für vergleichbar genaue Messungen bei verringerten Kosten. Während SQUIDs wegen der kryogenen Kühlung immer einige Zentimeter von Körper entfernt bleiben müssen, können CSAMs direkt am Körper platziert werden. Das magnetische Feld der physiologischen Körperströme nimmt stark mit dem Abstand ab, sodass jeder Zentimeter einen großen Gewinn an Signalstärke bringt.

Eine wichtige Anwendung ist die Messung der Magnetfeldverteilung um das Gehirn herum, das sogenannte Magnetenzephalogramm (MEG). Es ermöglicht es, die elektrische Aktivität von Neuronen zu charakterisieren. Derartige funktionale Untersuchungen spielen heute eine immer größere Bedeutung in der Neurologie und der Neurowissenschaft. Sowohl bei psychischen Erkrankungen aller Altersgruppen wie auch bei altersbedingten Erkrankungen besteht ein dringender Bedarf an objektivierbaren elektrophysiologischen Messgrößen, die die klinische Diagnostik unterstützen.

Die Wissenschaftler von NIST und PTB hatten bereits 2010 einen Vorläufer des jetzigen CSAM für Magnetfeldmessung am menschlichen Herzen erfolgreich getestet. Diesmal wurden die CSAM-Sensoren in vier Millimeter Abstand vom Kopf gesunder Testpersonen in Position gebracht. Am Hinterkopf konnten bei wachen Personen sogenannte Alphawellen gemessen werden – ein Grundrhythmus der elektrischen Hirnaktivität, der sich spontan bei Entspannung einstellt. In einer weiteren Versuchsreihe konnte mit den CSAM-Sensoren sogar die Verarbeitung von Berührungsreizen im Gehirn durch das damit verbundene, sehr schwache Magnetfeld aufgezeichnet werden. Zur eindeutigen Validierung der Messergebnisse wurden zu allen CSAM-Messungen parallel MEG-Aufzeichnungen mit den bewährten SQUID-Sensoren durchgeführt. if/ptb

Presseinformation des NIST
http://www.nist.gov/pml/div688/brain-041912.cfm
Wissenschaftliche Veröffentlichungen
• Gemeinsames aktuelles Experiment von PTB und NIST:
T. Sander-Thömmes, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe: Magnetoencephalography with a Chip-Scale Atomic Magnetometer. Biomedical Optics Express Vol. 3 Issue 5, pp.981-990 (2012)

http://www.opticsinfobase.org/boe/issue.cfm?volume=3&issue=5

• PTB-NIST-Experiment von 2010:
S. Knappe, T.H. Sander, O. Kosch, F. Wiekhorst, J. Kitching and L. Trahms. Cross-validation of microfabricated atomic magnetometers with SQUIDs for biomagnetic applications. Applied Physics Letters. 97, 133703 (2010); doi:10.1063/1.3491548. Online publication: Sept. 28, 2010.
Ansprechpartner
Dr. Tilmann Sander-Thömmes, PTB-Arbeitsgruppe 8.21 Biomagnetismus,
Tel. (030) 3481-7436, E-Mail: tilmann.sander-thoemmes@ptb.de

Imke Frischmuth | PTB
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Hochgezielte Chemotherapie gegen Leberkrebs: Radiologen der Asklepios Klinik Barmbek sind europaweit führend
14.06.2019 | Asklepios Kliniken Hamburg GmbH

nachricht Neue Hochpräzisionsbestrahlung für Krebspatient*innen am Universitätsklinikum Ulm
06.06.2019 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics