Neuer Chip findet Gifte – Die Proteomik erhält ein schnelles und leistungsstarkes Hilfsmittel

Die Mischkammern stark vergrößert University of Twente

Weil Fremdkörper wie toxische Substanzen und Medikamente im menschlichen Körper nur eine kurze Lebensdauer haben, ist die Untersuchung ihrer Wirkung schwierig. Die häufige Folge: Schädigungen sind bereits eingetreten.

Eine dringliche Frage wäre aber beispielsweise, was geschieht, wenn schädliche Polyzyklische Aromatische Kohlenwasserstoffe (PAK) im Blut mit Hämoglobin in Kontakt kommen? PAK werden unter anderem bei der Verlegung von Asphalt im Straßenbau oder bei Kohlekraftwerken freigesetzt. Mit seinem neuen Lab-on-a-Chip-System ist es Floris van den Brink nun gelungen, diese schnelle Interaktion zu untersuchen. Anwendbar ist es auch beim menschlichen Körper.

Chip produziert Metaboliten

Im menschlichen Körper, vor allem in der Leber, findet zunächst eine Umwandlung der Fremdstoffe in Metaboliten statt. Der Chip tut dies auch: Ein winziger elektrochemischer Reaktor produziert PAK-Metaboliten wie Hydroxypyren. Der nächste Schritt ist das Mischen dieser Metaboliten mit Hämoglobin, um zu erkennen, auf welche Weise sich die toxischen und hochreaktiven Metaboliten mit dem Hämoglobin verbinden. Mit Hilfe einer neuen Mischtechnik kann dies sehr schnell geschehen, auch innerhalb einer Sekunde.

Anschließend wird durch die Verwendung des gleichen Mikrolabors untersucht, mit welchen Mitteln das Blut zu entgiften ist. Auf gleiche Weise wird die Wirkung von Medikamenten beobachtet – ohne Labortiere einzusetzen.

Schnelles Mischen

Das Mischen von Fluiden auf einer Mikro- oder Nanoskala ist problematisch: Sie verhalten sich in den winzigen Flüssigkeitskanälen anders als in einem größeren Maßstab – und mechanisches Rühren ist ebenfalls keine Option. Van den Brink entwarf daher zwei kreisförmige Mischkammern, bestehend aus winzigen Kanälen, die einen Gradienten aufweisen. Ein Stoff dringt oben, ein weiterer unten ein.

Mit Hilfe der Winkeldifferenz kann das Mischen wesentlich beschleunigt werden. Der gesamte Mischer ist nicht größer als 0,1 Quadratmillimeter. Durch die Verwendung von Massenspektrometrie wird das Ergebnis analysiert. Eine Besonderheit beim Reaktor ist: Durch den Einsatz von Diamantelektroden anstelle von Platin wird die Ausbeute verbessert.

Proteomik

Das Messen der Wirkung von Hydroxypyren-Metaboliten auf Hämoglobin ist nur ein Beispiel der möglichen Anwendungen des neuen Chips. Das System eignet sich ebenso für das Analysieren zahlreicher Wechselwirkungen mit Proteinen, möglicherweise auch bei DNA.

Da die Proteomik für die Entwicklung von Medikamenten an Bedeutung gewinnt, könnte also dem Chip als ein schnelles und leistungsstarkes Hilfsmittel eine wichtige Rolle zukommen.

Van den Brink forschte im Rahmen der BIOS-Lab-on-a-Chip-Gruppe, die Teil vom MESA + Institut für Nanotechnologie und vom MIRA-Institut für Biomedizinische Technik und Technische Medizin der University of Twente ist. Er arbeitete mit Kollegen von der Universität Münster, Deutschland, zusammen.

Die Abhandlung „Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient mixer“ von Floris van den Brink, Tina Wigger, Liwei Ma, Mathieu Odijk, Wouter Olthuis, Uwe Karst und Albert van den Berg erschien kürzlich in „Lab on a Chip“, einer Fachzeitschrift von Royal Society of Chemistry.

Media Contact

Alf Buddenberg idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.utwente.nl/en/research/

Alle Nachrichten aus der Kategorie: Medizintechnik

Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer