Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue MRT-Technik soll noch bessere Bilder vom Innern des Körpers liefern

20.11.2012
BMBF stellt 1,3 Millionen Euro für Weiterentwicklung der Kernspintomographie mithilfe von polarisierten Substanzen bereit

Die Kernspintomographie hat sich innerhalb von 30 Jahren zu einem der wichtigsten bildgebenden Verfahren in der medizinischen Diagnostik entwickelt. Mit einem neuen Ansatz, der auf der Verwendung von polarisierten Gasen oder gelösten Stoffen beruht, sollen in Zukunft noch bessere Bilder aus dem Inneren des menschlichen Körpers angefertigt werden können.


Xenon-Polarisatoranlage
Foto: Institut für Physik, JGU

Das Bundesforschungsministerium (BMBF) stellt Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) und des Max-Planck-Instituts für Polymerforschung in den kommenden drei Jahren 1,3 Millionen Euro bereit, damit sie das neue Verfahren zur Marktreife bringen.

Die Wissenschaftler um Univ.-Prof. Dr. Werner Heil vom Institut für Physik der JGU arbeiten an einer Technik, die noch in den Kinderschuhen steckt, jedoch das Potenzial zu einer bedeutenden Innovation in sich trägt. Das Vorhaben mit dem Titel „Magnetic Resonance Imaging (MRI) mit innovativen hyperpolarisierten Kontrastmitteln“ startet im Dezember 2012. Es wird vom BMBF im Rahmen der Maßnahme „Validierung des Innovationspotenzials wissenschaftlicher Forschung – VIP" gefördert. Die Maßnahme unterstützt Wissenschaftler dabei, den ersten entscheidenden Schritt zu tun, damit neue Ergebnisse aus der Wissenschaft in eine wirtschaftliche Nutzung überführt werden können.

Die Kernspintomographie oder Magnetresonanztomographie (MRT) liefert detailgenaue Bilder von Organen und Geweben, ohne dass Patienten einer potenziell schädlichen Strahlung ausgesetzt sind. Der Nachteil dieser Methode ist aber die geringe Empfindlichkeit, die derzeit hauptsächlich durch immer stärkere und teurere Magnete verbessert wird. Das Projekt der Mainzer Wissenschaftler verfolgt hierbei einen anderen Ansatz, um zu einer genaueren Darstellung und in der Folge neuen Perspektiven für die Diagnose von Erkrankungen zu gelangen.

Normalerweise werden bei der Kernspintomographie die körpereigenen Protonen des Wasserstoffs als Signalgeber genutzt. Alternativ dazu können aber auch hyperpolarisierte Atome für die MRT verwendet werden, die in den Körper eingebracht werden müssen. Werner Heil hat zusammen mit dem Mainzer Physiker Ernst-Wilhelm Otten in den 1990er Jahren ein Verfahren entwickelt, bei dem das Edelgas Helium-3 mithilfe von Lasern polarisiert wird. Das polarisierte Gas wird eingeatmet und liefert im Tomographen hochaufgelöste Bilder von der Lunge und Lungenkrankheiten bis in die kleinsten Verästelungen hinein. Aufbauend auf diesen Erfahrungen wollen die beteiligten Wissenschaftler die Technik nun weiter vorantreiben.

„Dazu wird uns die laserinduzierte Polarisation von Edelgasen allein nicht ausreichen“, erläutert Heil. Außer Helium kann grundsätzlich auch das Edelgas Xenon polarisiert werden, das allerdings wegen seiner narkotisierenden Wirkung für medizinische Untersuchungen nur bedingt geeignet ist. Mit ganz neuen Substanzen wie polarisiertem Kohlenstoff-13 als Marker würden sich den Diagnostikern neue Türen öffnen: Biologische Moleküle oder Wirkstoffe könnten durch Hyperpolarisierung markiert werden, um somit direkte Signale über ihre Verteilung im Organismus zu erhalten. Heil erwartet, dass damit dynamische Prozesse auch auf molekularer Ebene beobachtet werden können, zum Beispiel bestimmte Stoffwechselprozesse.

Bevor an eine praxistaugliche Umsetzung zu denken ist, gilt es jedoch, verschiedene Hürden zu überwinden. Die Hyperpolarisation hält, Helium ausgenommen, nur für kurze Zeit an. „Wir müssen also die Prozesse von Polarisierung, Verabreichung und Detektion komprimieren, sodass sie möglichst nicht länger als eine Minute in Anspruch nehmen“, erklärt Heil. Außerdem ist es ein Problem, die hyperpolarisierten Substanzen in die Blutbahn zu bringen, ohne den Organismus zu schädigen. Hier arbeitet das Forschungsteam mit Membranen, wie sie auch bei Herzlungenmaschinen oder bei der Dialyse zum Einsatz kommen. „Wir müssen den Reaktionsraum vom Applikationsraum trennen“, erläutert Dr. Peter Blümler, der maßgeblich an diesem Problem arbeitet. „Vielleicht brauchen wir dazu auch mehrere Membranen, damit nur das ins Blut gelangt, was wir auch wirklich wollen.“ Ein anderes Problem scheint indes schon gelöst: Während die Polarisierung von Helium oder Xenon mit Lasern erfolgen kann, wird durch vielbeachtete Arbeiten von Dr. Kerstin Münnemann am MPI für Polymerforschung bei anderen Stoffen die magnetische Polarisation durch Reaktion mit Para-Wasserstoff erreicht. Die drei Wissenschaftler wollen in diesem Projekt ihre Expertise bündeln, um an der Schnittstelle von Physik, Chemie und Medizin neue Diagnostika herzustellen.

Weitere Informationen:
Univ.-Prof. Dr. Werner Heil
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-22885
Fax +49 6131 39-25179
E-Mail: wheil@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/
http://www.ag-heil.physik.uni-mainz.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Grünen Star effektiv therapieren: Wächter über den Augeninnendruck
02.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems IMS

nachricht Künstliche Bauchspeicheldrüse bewährt sich im Spital
26.06.2018 | Universitätsspital Bern

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics