Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskopie der Zukunft

22.05.2018

Zwei neue Forschungsgruppen zur Quantentechnologie an der Universität Jena eingerichtet

In der Entwicklung der modernen Mikroskopie spielt Jena eine bedeutende Rolle. Der Faden, den Carl Zeiß und Ernst Abbe in der zweiten Hälfte des 19. Jahrhunderts aufgenommen haben, reicht bis in die Gegenwart – junge Nachwuchswissenschaftler etwa verfolgen an der Friedrich-Schiller-Universität Jena und anderen Forschungseinrichtungen innovative Ideen im Bereich mikroskopischer Bildgebungsverfahren.


Dr. Falk Eilenberger leitet die neue Forschungsgruppe „NanoScopeFutur-2D“, die sich sogenannten Übergangsmetall-Dichalcogeniden widmet.

Foto: Jan-Peter Kasper/FSU


Dr. Frank Setzpfandt koordiniert die neue Forschungsgruppe "FOQUOS", bei der die Erforschung von Abbildungen mit Quantenlicht im Mittelpunkt steht.

Foto: Jan-Peter Kasper/FSU

Im Institut für Angewandte Physik der Uni Jena nehmen nun gleich zwei Forschungsgruppen ihre Arbeit auf. Sie betreiben in intensiver Zusammenarbeit mit Forschungsgruppen des Fraunhofer-Instituts für Angewandte Optik und Feinmechanik IOF Grundlagenforschung auf dem Feld der Quantentechnologie und loten deren Potenziale für die Mikroskopie aus.

Potenzial für verbesserte Fluoreszenzmikroskopie?

Die Gruppe „NanoScopeFutur-2D“ unter der Leitung von Dr. Falk Eilenberger von der Universität Jena wird in den kommenden fünf Jahren vom Bundesministerium für Bildung und Forschung mit insgesamt 2,5 Millionen Euro gefördert. „Gemeinsam mit vier Kollegen widmen wir uns sogenannten Übergangsmetall-Dichalcogeniden“, erklärt der Jenaer Physiker.

Dieses Material ähnelt Graphen, besteht ebenfalls aus Lagen einzelner Atome, die dünner als ein Nanometer sind. „Während Graphen sich durch seine mechanischen und elektronischen Eigenschaften auszeichnet, stechen bei den Übergangsmetall-Dichalcogeniden vor allem die photonischen Eigenschaften hervor“, erklärt Eilenberger.

„Sie können sehr stark mit Licht wechselwirken, was sie für optische Anwendungen äußerst interessant macht.“ So können sie beispielsweise Licht in einem Volumen sammeln, das deutlich geringer ist als die Wellenlänge des Lichts. Mit quantentechnologischen Anwendungen, die sich diese Eigenschaften zunutze machen, könnten Mikroskope etwa besser in den Nanobereich einer Probe vordringen.

Zudem lassen sich Lichtquellen entwickeln, die anstatt Farbstoffen für die Fluoreszenzmikroskopie zum Einsatz kommen könnten. Während dieses Bildgebungsverfahrens beobachten Wissenschaftler zum Beispiel die Prozesse, die innerhalb einer Zelle ablaufen.

Dabei werden fluoreszierende Stoffe innerhalb der Zelle durch das Bestrahlen mit Licht einer bestimmten Wellenlänge angeregt und senden Licht mit einer anderen Wellenlänge zurück. So entsteht ein Bild der Zelle. Allerdings zerstören die bisher üblichen organischen Moleküle die Zelle relativ schnell, da sie zu Giftstoffen zerfallen. Stoffe auf Basis der Übergangsmetalle könnten das verhindern und längere Prozesse abbilden, wie sie etwa von Entwicklungsbiologen beobachtet werden.

„Allerdings sind das bisher theoretische Vermutungen – in den kommenden fünf Jahren wollen wir deshalb erst einmal mehr über das vielversprechende Material und seine photonischen Eigenschaften erfahren“, sagt Nachwuchsgruppenleiter Eilenberger.

Photonenpaar mit unterschiedlichen Wellenlängen

Die Gruppe „FOQUOS“, koordiniert von Dr. Frank Setzpfandt, besteht aus Forschenden der Uni Jena und der TU Ilmenau und wird von der Thüringer Aufbaubank mit 700.000 Euro aus Mitteln des Freistaats Thüringen und des Europäischen Sozialfonds für die kommenden drei Jahre unterstützt. Hierbei steht die Erforschung von Abbildungen mit Quantenlicht im Mittelpunkt.

„Quantenmechanisch verschränkte Photonen treten immer paarweise auf – und dieser besondere Umstand lässt sich möglicherweise auch für die Mikroskopie nutzen“, erklärt Setzpfandt. „Man beleuchtet beispielsweise eine Probe mit einem Photon und detektiert auf der anderen Seite, ob es die Probe durchdrungen hat. Mit einem zweiten Detektor findet man den Punkt, an dem das zweite Photon entstanden ist. Da die beiden Photonen nur zusammen auftreten, lässt sich daraus ableiten, wo das erste Photon die Probe getroffen hat. Korreliert man diese Informationen, lässt sich ein Bild der Probe erstellen, ohne dass eine Kamera die eigentliche Probe beobachtet hat.“

Dabei besteht die Möglichkeit, dass die Photonen unterschiedliche Wellenlängen aufweisen können. Das erste könnte im sichtbaren Bereich liegen, während sich die Wellenlänge des zweiten im mittleren Infrarotbereich bewegt, was Kameras nur schwer erfassen. „So lassen sich die Eigenschaften der Probe in diesem Wellenlängenbereich messen. Gerade im mittleren Infrarotbereich hinterlassen mitunter wichtige biologische und chemische Prozesse Signaturen, die wir so erkennen und darstellen könnten“, sagt Setzpfandt.

„Die Idee, ein Mikroskop zu bauen, dass für die Optoelektronik eine bestimmte Wellenlänge hat und für die Interaktion mit der Probe eine ganz andere, bricht mit vielen physikalischen Selbstverständnissen – und es ist spannend zu sehen, welche grundlegenden Informationen wir in den kommenden Jahren sammeln können.“

Denn auch wenn sie ein großes Interesse daran haben, ihre Arbeit in Anwendungen münden zu lassen, betonen die beiden Jenaer Physiker, dass sie noch ganz am Anfang stehen und auch Grundlagenforschung betreiben. Die Bedingungen dafür seien in Jena perfekt.

„Als experimentierender Physiker steht mir hier ein Maschinenpark zur Verfügung, an dem sich alle notwendigen optischen und nanoskopischen Analyseverfahren durchführen lassen“, sagt Eilenberger. „Und diese Verbindung zwischen Grundlagen und Anwendungen, die hier allgegenwärtig ist, macht durchaus auch die Philosophie von Abbe und Zeiß immer wieder spürbar.“

Kontakt:
Dr. Falk Eilenberger / Dr. Frank Setzpfandt
Institut für Angewandte Physik der Universität Jena
Albert-Einstein-Straße 15, 07745 Jena
Tel.: 03641 / 947990 und 947569
E-Mail: falk.eilenberger[at]uni-jena.de / f.setzpfandt[at]uni-jena.de

Weitere Informationen:

http://www.iap.uni-jena.de/ - Institut für Angewandte Physik der Universität Jena

Sebastian Hollstein | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Bessere Rheuma-Früherkennung dank neuer Fußkamera
15.10.2019 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Cardioband repariert undichte Herzklappe
15.10.2019 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungsnachrichten

Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

16.10.2019 | Messenachrichten

Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen

16.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics