Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kunstherz auf dem Prüfstand

13.07.2017

ETH-Forschende aus der Gruppe für Funktionelles Material-Engineering haben ein Silikonherz entwickelt, das sehr ähnlich pumpt wie ein menschliches Herz. Gemeinsam mit Kollegen von der Professur für Produktentwicklung und Konstruktion haben sie geprüft, wie gut es funktioniert.

Unverkennbar – was da schlägt, sieht aus wie ein echtes Herz. Und dies ist auch das Ziel des ersten weichen Kunstherzens: möglichst nah am natürlichen Vorbild zu sein. Entwickelt hat dieses Silikonherz Nicholas Cohrs. Er ist Doktorand in der Gruppe von Wendelin Stark, Professor für Funktionelles Material-Engineering an der ETH Zürich.


Das weiche Kunstherz gleicht dem menschlichen Herz in Aussehen und Funktion.

Zurich Heart


ETH-Forschende haben das Herz auf einem speziellen Prüfstand getestet.

Zurich Heart

Der Grund, warum die Natur hier Vorbild sein sollte, ist einleuchtend: Heute existierende Kunstherzen haben viele Nachteile. Die Mechanik ist anfällig auf Störungen. Zudem kommen die derzeitig verwendeten Kunstherzen ohne Puls aus, wobei noch unklar ist, welche Folgen dies für den Körper haben könnte. «Ziel muss also sein, ein Herz zu entwickeln, das ungefähr die gleiche Grösse hat, wie das eines Patienten und welches das menschliche Herz in Form und Funktion so gut wie möglich imitiert», so Cohrs.

Ein gut funktionierendes Kunstherz zu haben, wäre indes mehr als nötig: Rund 26 Millionen Menschen weltweit leben mit einer Herzinsuffizienz und Spenderherzen sind Mangelware. Mit mechanischen Kunstherzen und Herzunterstützungssystemen werden die Wartezeiten von schwerkranken Patientinnen und Patienten überbrückt, bis sie ein Spenderherz erhalten oder das Herz sich von selber wieder erholt.

... mehr zu:
»ETH »Kunstherz »Luftdruck »Viskosität

Das weiche Kunstherz wurde mittels 3D-Drucker aus Silikon hergestellt, wiegt 390 Gramm und hat ein Volumen von 679 cm3. «Es handelt sich um einen Silikon-Monoblock, der ein kompliziertes Innenleben hat», erläutert Cohrs. Wie ein echtes Menschenherz besteht auch dieses Kunstherz aus einer rechten und einer linken Herzhälfte. Anders als beim menschlichen Herzen werden diese aber nicht durch eine Scheidewand sondern durch eine zusätzliche Kammer getrennt. Diese wird durch Luftdruck bewegt und ist nötig, um die Flüssigkeit aus den Blutkammern zu pumpen und ersetzt so die Muskelkontraktion des menschlichen Herzens.

In eine neue Richtung denken

Ob dieses Kunstherz auch funktioniert, hat Anastasios Petrou getestet. Er ist Doktorand bei der Professur für Produktentwicklung und Konstruktion von ETH-Professor Mirko Meboldt. Die Resultate des Versuchs publizierten die jungen Forscher soeben im Fachmagazin «Artifical Organs».

Die Forscher konnten beweisen, dass das weiche Kunstherz grundsätzlich funktioniert und sich sehr ähnlich bewegt wie das menschliche Pendant. Ein Problem hat das künstliche Herz aber: Bis jetzt steht es nur rund 3000 Schläge durch, was einer Laufdauer von etwa einer halben bis einer dreiviertel Stunde entspricht. Danach hielt das Material der Belastung nicht mehr Stand.

Cohrs erklärt: «Es handelt sich bei diesem Versuch klar um einen Machbarkeitstest. Unser Ziel war nicht, ein implantierbares Herz vorzustellen, sondern bei der Entwicklung von künstlichen Herzen in eine neue Richtung zu denken.» Natürlich müssten noch die Reissfestigkeit des Materials und die Leistung entscheidend erhöht werden.

Zurich Heart bringt Forschende zusammen

Kennengelernt haben sich Cohrs und Petrou im Rahmen des Zurich Heart, einem Flagship Projekt der Hochschulmedizin Zürich. Dieses Projekt bringt Forschende aus rund 20 Forschungsgruppen aus verschiedenen Fachgebieten und Institutionen zusammen. Während die einen an Verbesserungen für Herzpumpen arbeiten, wie zum Beispiel die Blutschädigung durch die mechanische Einwirkung der Pumpe reduziert werden kann, erforschen die andern extrem elastische Membranen oder biologisch besonders verträgliche Oberflächen. Dies geschieht in sehr engem Austausch mit den Klinikern in Zürich und Berlin.

Der rege Austausch unter den Forschenden kam auch diesem Teilprojekt des Zurich Heart zu Gute. Die Maschinenbauingenieure der ETH Zürich, welche die Herzpumpen verbessern, haben ein Modul entwickelt, mit dem sie den menschlichen Herzkreislauf nahezu perfekt simulieren können. Für ihre Tests schlossen die Forscher das Silikonherz an dieses System, in dem eine Flüssigkeit mit vergleichbarer Viskosität wie Blut zirkuliert, an. «Vermutlich ist unser System momentan eines der Besten der Welt», sagt Petrou nicht ohne Stolz.

Am Herzen zu forschen, ist eine reizvolle Aufgabe. Cohrs und Petrou möchten diesem Forschungsgebiet jedenfalls treu bleiben. «Ich hätte nie gedacht, dass ich als Maschinenbauer je ein weiches Herz in Händen halte. Nun bin ich so fasziniert von dieser Forschung, dass ich gerne an der Entwicklung von Kunstherzen weiterarbeiten möchte», sagt Petrou.

Literaturhinweis
Cohrs NC, Petrou A, Loepfe M, Yliruka M, Schumacher CM, Kohll AX, Starck CT, Schmid Daners M, Meboldt M, Falk V, Stark WJ: A soft Total Artificial Heart – First Concept Evaluation on a Hybrid Mock Circulation. Artificial Organs, 10. Juli 2017, doi: 10.1111/aor.12956 [http://dx.doi.org/10.1111/aor.12956]

Weitere Informationen:

Video: https://www.youtube.com/watch?v=Ou0zY9KMuXQ

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/07/kunstherz-...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: ETH Kunstherz Luftdruck Viskosität

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Radar statt Stethoskop?
07.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Prostatakrebs kann per Ultraschall mit künstlicher Intelligenz besonders effektiv erkannt werden
27.07.2018 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics