Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebs: "Angelrute" bringt Gehirntumoren den Tod

17.02.2014
Glioblastome ohne OP entfernt und an zugänglicheren Ort gebracht

Fischen nach Krebszellen - so könnte man das Verfahren beschreiben, das Wissenschaftler an der Emory University School of Medicine entwickelt haben.


Gehirn-Scan: Tumore werden ausgetrickst
Foto: pixelio.de, Rieke

Eine winzige Rute holt im Gehirn Tumorzellen ein und führt sie aus dem Gehirn hinaus zum Absterben. Glioblastome gelten als die am häufigsten auftretende und aggressivste Art von Gehirnkrebs bei Erwachsenen. Die Erkrankung ist tödlich und nur sehr schwer zu operieren. Verantwortlich dafür sind die Größe der Tumore und ihre unzugängliche Lage.

Sechs Millimeter langer "Kescher"

Das Team um Ravi Bellamkonda entwickelte nicht noch wirksamere Medikamente, um die Krebszellen im Gehirn abzutöten, sondern überlegte sich, ob die Tumore nicht an einen zugänglicheren Ort bewegt werden könnten. Glioblastomzellen bewegen sich im Gehirn und binden sich an Nerven und Blutgefäße. Um ihren Weg zu verändern, wurde eine Rute aus Polymeren entwickelt, die rund sechs Millimeter lang ist.

Im Inneren der Rute wurde eine dünne, rund zehn Mikrometer dicke Folie angebracht, die die Form von Nerven und Blutgefäßen nachahmt. Laut dem Wissenschaftler scheinen die Zellen diese Form zu mögen. Aus diesem Grund sind keine weiteren Chemikalien oder Proteine erforderlich. Am oberen Ende der Rute ist ein Tropfen Gel angebracht, der ein Medikament enthält, das die Zellen der Glioblastome abtötet.

Tumorzellen halten die Rute für Nerven oder Blutgefäße, binden sich an sie und werden am Ende abgetötet. Laut Bellamkonda kommt der Tumor so zu den Medikamenten und nicht umgekehrt. Um das Verfahren zu testen, implantierten die Forscher menschliche Glioblastomzellen in die Gehirne von Ratten. Sie setzten die Rute in den Tumor ein. Das Gel befand sich dabei etwas über der Oberfläche des Schädels. Nach 15 Tagen hatte sich der Großteil der Tumorzellen entlang der Rute weiter bewegt und ihr Ende gefunden.

Auf sämtliche Krebsarten anwendbar

Laut dem Wissenschaftler verkleinerte sich der Tumor, der nicht nur die Rute nach oben gelangte um fast 90 Prozent. "Wir haben sehr genau überprüft, dass wir dem Tumor nicht nur eine andere Möglichkeit des Wachstums gegeben haben. Es hat sich aber gezeigt, dass wir den Tumor von einem Ort an den anderen bewegen konnten."

Das Verfahren kann einen Patienten nicht vollständig von Krebs befreien. Bellamkonda geht jedoch davon aus, dass ein inoperabler Tumor damit in einen Bereich bewegt werden kann, der näher an der Oberfläche des Gehirns liegt, wo er entfernt werden kann. Es ist auch denkbar, dass der Tumor auf eine Größe schrumpft, die keinen Schaden mehr anrichtet.

Wie Nature Materials http://nature.com/nmat berichtet, sind die ins Gehirn eingeführten Ruten so winzig, dass sie zu keinen Störungen führen sollten. Das Team hat das Verfahren im Labor auch an isolierten Brustkrebszellen und Prostatakrebs getestet. Die Wissenschaftler hoffen einem NewScientist-Bericht nach darauf, dass es auch bei vielen anderen Arten von langsam wachsenden Tumoren eingesetzt werden kann.

Video: http://www.youtube.com/watch?v=7zf7RflYZrk

Michaela Monschein | pressetext.redaktion
Weitere Informationen:
http://med.emory.edu

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Immer mehr Patienten profitieren von Innovationen in der Gefäßmedizin
08.06.2018 | Deutsche Gesellschaft für Angiologie - Gesellschaft für Gefäßmedizin e.V.

nachricht Doppelschichtstents in der Halsschlagader schützen vor Schlaganfall
07.06.2018 | Deutsche Gesellschaft für Angiologie - Gesellschaft für Gefäßmedizin e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics