Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kopf-OP: Roboter-Wurm fräst sich um Ecken

04.11.2015

Tumore im Innenohr zu entfernen, ist eine heikle Sache: Die Ärzte müssen meist das gesamte Felsenbein entfernen. Künftig reicht ein fünf Millimeter breiter Tunnel durch den Knochen, den der Mini-Roboter NiLiBoRo fräst. Um sensible Bereiche wie Blutgefäße und Nerven macht er dabei einen großen Bogen. Auf der Messe Compamed vom 16. bis 19. November in Düsseldorf stellen die Forscher das neuartige System vor (Halle 08a, Stand K38).

Diagnose Innenohrtumor – an einer Operation führt kein Weg vorbei. Das Innenohr ist jedoch nicht gut zugänglich: Es wird von einem Hirnschädelknochen namens Mastoid verdeckt, auch Felsenbein genannt. Zudem durchziehen viele Blutgefäße und Nerven das umliegende Gewebe. Die Ärzte fräsen daher so viel vom Mastoid-Knochen heraus, bis sie jede dieser sensiblen Strukturen aufgespürt haben. Nur so können sie sicherstellen, sie nicht zu schädigen. Meist heißt das allerdings: Die Mediziner müssen den gesamten Knochen entfernen. Das entstandene Loch füllen sie nach der Operation mit Fettgewebe aus dem Bauch.


Mithilfe der aufpumpbaren Kissen wird NiLiBoRo bei der Operation fixiert.

© Fraunhofer IPA

Operieren durch einen fünf Millimeter breiten Tunnel

Künftig soll diese Operation schonender erfolgen: Dann reicht ein kleines Loch von fünf Millimetern Durchmesser, um den Tumor aus dem Innenohr herauszuschneiden. Möglich macht es der NiLiBoRo, kurz für Nicht-Linearer Bohr-Roboter, den Forscher der Mannheimer Projektgruppe für Automatisierung in der Medizin und Biotechnologie des Fraunhofer-Instituts für Produktionstechnik und Automatisierung IPA entwickeln, gemeinsam mit ihren Kollegen der Technischen Universität Darmstadt, der Universität Aachen und des Universitätsklinikums Düsseldorf.

Zwar gibt es bereits Bohrer, die einen Tunnel in einen Knochen fräsen können – allerdings bahnen sie sich ihren Weg nur schnurgerade in den Knochen hinein. »NiLiBoRo kann erstmals auch um Ecken bohren«, sagt Lennart Karstensen, Wissenschaftler der Projektgruppe. Diese Eigenschaft ist es, die minimalinvasive Operationen von Innenohrtumoren erst ermöglicht.

Denn würde der Tunnel gerade verlaufen, käme er hier und da den Nerven bedenklich nahe. Um sie nicht zu verletzen, dürfte der Durchmesser des Tunnels nicht mehr als ein bis zwei Millimeter betragen. Durch so ein kleines Loch kann man jedoch nicht operieren. NiLiBoRo dagegen ist in der Lage, einen Bogen um empfindliche Stellen zu machen, der Tunnel kann daher fünf Millimeter breit sein. Breit genug also, um die Operation durchzuführen.

Hydraulische Leitungen lassen den Roboter-Wurm vorwärts kriechen

Doch wie schafft der »Wurm« es, sich auf Kurven und um Ecken herum durch den Mastoid-Knochen zu fräsen? »Der Wurm besteht aus einem ›Kopf‹ und einem ›Schwanz‹«, erläutert Karstensen. »Diese beiden Teile sind über einen Faltenbalg flexibel miteinander verbunden.« Der Aufbau erinnert an einen überlangen Linienbus, bei dem der vordere und der hintere Teil durch eine schlauchartige Konstruktion gekoppelt ist, die einer Ziehharmonika ähnelt.

Auf seinem Weg durch den Knochen ist der Roboter über acht bis zwölf hydraulische Leitungen mit der »Außenwelt«, also den Steuerungsgeräten und Pumpen im Operationssaal, verbunden. Diese Leitungen lassen ihn in die richtige Richtung kriechen: Zunächst pumpen sie Hydraulikflüssigkeit in drei Kissen, die sich am hinteren Teil befinden. Die Kissen füllen den Raum zwischen Wurm und Knochen und fixieren den hinteren Mini-Roboter-Teil somit an Ort und Stelle.

Nun strömt die Flüssigkeit in den Balg: Die »Ziehharmonika« entfaltet sich und drückt den Kopf nach vorne. Der Wurm streckt sich quasi und bewegt seinen vorderen Teil dabei weiter in den Knochen hinein. Der Bohrer, der am Kopf befestigt ist, fräst den Weg frei. Jetzt wird der hintere Teil nachgezogen, ähnlich wie bei einem lebendigen Wurm:

Dazu werden die Kissen am vorderen Teil aufgepumpt und halten diesen fest, während die Hydraulikflüssigkeit aus den hinteren Kissen entweicht. Die Leitungen saugen nun auch die Flüssigkeit aus dem Balg. Er zieht sich zusammen und schleppt den hinteren Teil hinter sich her. Stück für Stück arbeitet sich NiLiBoRo auf diese Weise vorwärts. »Die Richtung, in die der Roboter sich bewegen soll, können wir über die Kissen am vorderen Teil einstellen. Soll er zum Beispiel nach links abbiegen, füllen wir das linke Kissen weniger straff als die anderen, der Roboter kippt daraufhin zur linken Seite«, sagt Karstensen.

Im Labor und später im Operationssaal wird der Weg, den NiLiBoRo sich bahnt, haargenau überwacht: Über ein elektromagnetisches Trackingsystem, kurz EMT, das die Kollegen an der Technischen Universität Darmstadt entwickeln. Zudem nimmt ein Computertomograph sporadisch Bilder auf und überprüft die Position.

Einen ersten Prototyp von NiLiBoRo haben die Forscher bereits gebaut. Momentan ist er noch fünfmal größer als die geplante Endversion. Er besteht vorerst nur aus dem vorderen Teil samt Balg, dem Herzstück also. Stück für Stück wollen die Wissenschaftler den Prototyp nun optimieren und erweitern. Steht die komplette Technik, soll NiLiBoRo auf seine endgültige Größe schrumpfen. In zwei Jahren, so hoffen die Forscher, könnten die Ärzte den Miniroboter erstmals testen.

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2015/November/kopf-op-rob...

Dipl.-Wirt.-Ing. (FH) Axel Storz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Außergewöhnliche Notoperation der Gefäßchirurgie am LMU-Klinikum München
17.12.2018 | Klinikum der Universität München

nachricht Alles unter Kontrolle: Fraunhofer LBF sorgt für mehr Zuverlässigkeit bei Medizingeräten
12.12.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics