Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Individuelle Implantate sollen Regeneration ermöglichen

24.04.2019

Forschungsvorhaben ist am Institut für Mehrphasenprozesse der Leibniz Universität Hannover angesiedelt

Ein Schnitt im Finger, ein aufgeschürftes Knie oder auch nur ein Kratzer auf der Hautoberfläche – der menschliche Körper hilft sich selbst, kleinere Wunden schließen sich scheinbar von allein.


Wie lassen sich diese Selbstheilungskräfte für die regenerative Medizin nutzen?

Diese Frage steht im Mittelpunkt des Forschungsvorhabens „Patientenspezifische Implantate aus Eigenblutspenden“, das am Institut für Mehrphasenprozesse (IMP) an der Fakultät für Maschinenbau angesiedelt ist und über die neu geschaffene Programmlinie Leibniz Young Investigator Grants der Leibniz Universität Hannover mit rund 88.000 Euro für zwei Jahre gefördert wird.

„Bisherige Implantate retten den Menschen, aber sie regenerieren ihn nicht vollständig“, sagt Dr.-Ing. Marc Müller, Oberingenieur am IMP, der das Vorhaben betreut. Der Heilungsprozess des Körpers werde zwar unterstützt, trotzdem handele es sich in der Regel um körperfremde Werkstoffe, die eingesetzt würden und die nicht alle Menschen gleich gut vertragen. Die Vorteile eines individuellen Implantats liegen dabei klar auf der Hand: Die Prothese wäre kein Fremdkörper, wodurch Unverträglichkeiten so gut wie ausgeschlossen wären.

Um dies zu erreichen – beispielsweise beim Ersatz von Blutgefäßen – will sich der Wissenschaftler die Eigenschaften des Gerinnungssystems des menschlichen Blutes zu Nutze machen und Implantate aus körpereigenem Material – in diesem Fall aus Blut – entwickeln.

Wenn die Haut verletzt wird, schließt der Körper zunächst die Wunde, um den Blutverlust zu stoppen und zu vermeiden, dass Fremdkörper eindringen. Die Blutplättchen, die sogenannten Thrombozyten, ändern dabei ihre Form. Aus einer winzig kleinen, flachen Scheibe wird ein Gebilde, dessen Form einem Seeigel gleicht: eine Kugel, aus deren Oberfläche lange, gespinstartige Fäden wachsen.

Diese aktivierten Thrombozyten verbinden sich miteinander, es entsteht zunächst ein gerüstartiges Gebilde. In einem zweiten Schritt wird dieses Gebilde durch spezifische Bluteiweiße verfestig.

Diese Eiweiße legen sich um das gerüstartige Gebilde und verkleben es, vergleichbar mit Mörtel, der eine Hauswand aus Steinen zusammenhält. Gleichzeitig mit ihrer Formänderung senden Thrombozyten spezifische Botenstoffe aus, die das Wachstums von Gefäßzellen fördern.

Die Idee ist nun, dieses Prinzip der Gerinnung sowie Gefäßregeneration gezielt anzuwenden und damit Prothesen herzustellen, beispielsweise Blutgefäßprothesen, die eingesetzt werden, um verletzte oder verschlossene Gefäße zu ersetzen.

In ersten Versuchen mit Schweineblut ist es bereits gelungen, poröse Trägerstrukturen aus Blutproteinen herzustellen, welche gleichzeitig die aus Thrombozyten gewonnenen Wachstumsfaktoren beinhalteten.

Nun geht es um den entscheidenden Schritt, die Konstruktion so zu verfestigen, dass sie im Körper über den gewünschten Zeitraum stabil ist. Dafür wollen die Wissenschaftler ein neuartiges Verfahren zur Vernetzung der Trägerstruktur entwickeln, welches auf den natürlichen Gerinnungsprozess zurückgreift.

Das Fernziel ist ein Konzept für eine Geräteentwicklung, mit der eine Herstellung von individuellen Implantaten aus Eigenblut möglich wird. Auf diese Weise können die Implantate direkt vor Operationen in Krankenhäusern hergestellt werden.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Dr.-Ing. Marc Müller, Institut für Mehrphasenprozesse der Leibniz Universität Hannover, unter Telefon +49 511 762 3639 oder per E-Mail unter mueller@imp.uni-hannover.de gern zur Verfügung.

Mechtild Freiin v. Münchhausen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Hochauflösende 3D-Ansicht des Tumorinneren
27.05.2020 | Technische Universität München

nachricht Kostengünstige Netzhaut-Diagnostik per Smartphone
25.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics