Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gelähmte Hand wird durch Exoskelett wieder funktionsfähig

31.01.2019

Mit einem neu entwickelten Hand-Exoskelett können Patienten ihre gelähmte Hand wieder bewegen. Das Exoskelett besteht aus einem zentralen Montagemodul sowie einzelnen, beweglichen Fingermodulen. Im Vergleich zu bereits bestehenden Hand-Exoskeletten hat das an der Universität Stuttgart entwickelte Modell entscheidende Vorteile: Zum einen können die Module individuell für jeden Patienten ausgestaltet und vor allem die Fingermodule sehr flexibel gestaltet werden. Damit erhält der Patient auch die Möglichkeit, seine Hand zu spreizen und seitlich zu bewegen und einzelne Finger zu bewegen.
Die TLB GmbH ist mit der Vermarktung und Verwertung dieser zukunftsweisenden Technologie beauftragt.

Greifen, Halten, Öffnen und Schließen – die Funktionen einer menschlichen Hand sind ein komplexes Zusammenspiel aus Muskeln, Knochen und Nervenfasern. Durch Erkrankungen wie Muskelschwäche, Spastik oder motorische Defizite kann die Funktionalität der Hand gestört sein.


An der Universität Stuttgart wurde ein Hand-Exoskelett entwickelt, mit welchem die Greif-Fähigkeit einer gelähmten Hand wiederhergestellt werden kann.

Foto: Universität Stuttgart

An der Universität Stuttgart wurde nun ein Hand-Exoskelett entwickelt, mit welchem die Greif-Fähigkeit einer gelähmten Hand wiederhergestellt werden kann.

Nach Hirn- oder Rückenmarksverletzungen können Beeinträchtigungen wie Verlust der Muskelkraft, Apraxien oder Ataxien, Spastik oder Lähmungen der Hand auftreten. Durch die Einschränkungen im beruflichen und privaten Bereich ist dies für die Betroffenen ein großer Verlust an Lebensqualität.

Forscher des Instituts für Industrielle Fertigung und Fabrikbetrieb (IFF) der Universität Stuttgart haben nun ein Hand-Exoskelett entwickelt, das aus einem zentralen Montagemodul sowie einzelnen, beweglichen Fingermodulen besteht. Im Vergleich zu bereits bestehenden Hand-Exoskeletten hat das in Stuttgart entwickelte Modell entscheidende Vorteile:

Zum einen können die Module individuell für jeden Patienten ausgestaltet und vor allem die Fingermodule sehr flexibel gestaltet werden. Damit erhält der Patient auch die Möglichkeit, seine Hand zu spreizen und seitlich zu bewegen und einzelne Finger zu bewegen.

Zum anderen ist durch diese Art der Ausgestaltung das Exoskelett leichter zu handhaben und die Patienten können es selbstständig anlegen. Durch das offene Schalensystem können die Patienten sich die Module einzeln an die Hand anstecken, wie Erfinder Jonathan Eckstein erläutert, der als wissenschaftlicher Mitarbeiter im Bereich Antriebssysteme und Exoskelette am IFF arbeitet. Die einzelnen Module werden angesteckt und können dann per Motor gestreckt oder gebeugt werden.

Das neu entwickelte Hand-Exoskelett wird aus einem speziellen Kunststoff hergestellt. Dadurch ist es möglich, die einzelnen Module mit einer geringen Wandstärke zu fertigen, was vor allem bei den Fingermodulen wichtig ist.

Das Exoskelett wiegt mit Motoren und Elektronik ungefähr 400 Gramm - das Handmodul wiegt ca. 80 Gramm. Damit ist es sehr leicht, gleichzeitig stabil und damit tragbar.

Ein nächster Schritt im Projekt wird die Steuerung des Hand-Exoskeletts sein, wie Jonathan Eckstein erklärt. Derzeit ist das Modul als eigenständiges, am Unterarm tragbares Gerät mit EMG- und Abstandssensoren verbunden, um zunächst die elektromechanische Funktionalität des Exoskeletts zu evaluieren. Eckstein: „Das Exoskelett soll in der kommenden Entwicklungsphase zusätzlich mit Hirnströmen gesteuert werden, die beispielsweise mit Augenbewegungen kombiniert werden.“

Dies erforschen die Projektpartner der Uniklinik Tübingen und der Universität Tübingen, während die Wissenschaftler der Hochschule Reutlingen an der 3D-Objekterkennung arbeiten, um alltägliche Gegenstände erkennen zu können und das Handexoskelett entsprechend des benötigten Griffmodus voreinzustellen.

Die Erfindung ist im Rahmen des Projektes „KONSENS NHE“ (Neurorobotik) entstanden. Dieses von der Baden-Württemberg Stiftung geförderte Forschungsprojekt unter der Leitung von Dr. med. Surjo Soekadar hat zum Ziel, ein Hand-Exoskelett für Schlaganfallpatienten zu entwickeln. Bereits seit April 2017 arbeiten Wissenschaftler der Universitätsklinik Tübingen, der Universitäten Tübingen und Stuttgart sowie der Hochschule Reutlingen zusammen. Langfristiges Ziel des Projekts ist, dass Patienten das System selbstständig im Alltag nutzen können.

Die Wissenschaftler forschen zu den einzelnen Projektbausteinen Neurotechnologie, Mechatronik, Sensortechnik und -steuerung, Machine Learning sowie 3D-Objekterkennung und bauen auf den Erfahrungen auf, die bereits im Jahr 2016 mit einem Prototyp eines hirngesteuerten Exoskeletts gemacht wurden.

Die Erfindung wurde patentrechtlich geschützt. Das deutsche Patent wurde erteilt. Die Technologie-Lizenz-Büro (TLB) GmbH unterstützt die Universität Stuttgart und die Baden-Württemberg Stiftung bei der Patentierung und Vermarktung der Innovation.

TLB ist im Auftrag der Universität mit der weltweiten wirtschaftlichen Umsetzung dieser zukunftsweisenden Technologie beauftragt und bietet Unternehmen Möglichkeiten der Zusammenarbeit und Lizenzierung der Schutzrechte.

Für weitere Informationen: Innovationsmanager Dr. Dirk Windisch (windisch@tlb.de)

Annette Siller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tlb.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wird Telemonitoring zur Routineversorgung bei Herzinsuffizienz?
02.07.2020 | Universitätsklinikum Würzburg

nachricht Gesundheit zum Anziehen
30.06.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics