Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Für neue Diagnoseverfahren: Physiker erzielen Messrekord für extrem schwache magnetische Signale

11.03.2019

Herzsignale oder Hirnströme berührungsfrei messen, Erze oder archäologische Funde tief in der Erde entdecken: Physiker der Universität des Saarlandes stellen mit Magnetfeldsensoren einen Empfindlichkeits-Rekord auf, der neue Messverfahren ermöglicht. In normaler Umgebung – ohne Vakuum, tiefe Temperaturen oder Abschirmung – spüren Professor Uwe Hartmann und sein Team sehr schwache magnetische Signale auf, und das trotz Störquellen auch über größere Distanzen: Es genügt eine Signalstärke von weit weniger als einem Milliardstel Tesla, etwa eine Million Mal kleiner als das Erdmagnetfeld. Biomagnetische Signale des menschlichen Körpers lassen sich so ebenso messen wie geophysikalische Phänomene.

Die Physiker suchen auf der Hannover Messe vom 1. bis 5. April Partner, um die Messmethoden weiterzuentwickeln: in Halle 2 am Forschungsstand B46.


Mit dem Magnetfeldsensor im Zylinder lässt sich auch der Magnetismus von Blättern messen: Uwe Hartmann demonstriert dies an einem getrockneten Lotus-Blatt.

Foto: Oliver Dietze


Melvin Chelli (l.) und Fabian Laurent (r.), wissenschaftliche Hilfskräfte im Team von Uwe Hartmann, bereiten den Magnetfeldsensor für die Messe vor.

Foto: Oliver Dietze

Wollen Ärzte heute das Herz ihres Patienten darauf untersuchen, ob es stolpert oder flimmert, müssen sie erst Elektroden auf Brust, Handgelenke und Fußknöchel kleben. Gleiches gilt für die elektrische Aktivität des Gehirns: Erst muss verkabelt werden, dann lassen sich die Hirnströme messen. Wenn es schnell gehen muss, verlieren Helfer dadurch wertvolle Zeit.

Einfacher wären Geräte, die ähnlich wie ein Metallsucher über Körper oder Kopf gehalten werden und trotzdem zuverlässige Werte liefern. Bislang scheitern derart berührungsfreie medizinische Diagnoseverfahren daran, dass sie wenig alltagsstauglich sind.

Hinreichend empfindliche Messsensoren, die biomagnetische Körpersignale messen können, brauchen heute extreme Bedingungen: Sie müssen gegen Störungen von außen stark abgeschirmt, bei unpraktischen Temperaturen von unter 200 Minus-Graden gekühlt oder im Vakuum betrieben werden.

Jetzt haben der Experimentalphysiker Professor Uwe Hartmann und sein Forscherteam an der Universität des Saarlandes ihre Magnetfeldsensoren so weiterentwickelt, dass sie ohne solche Weltraumbedingungen in normaler Umgebung sehr schwache Signale erfassen können – wie etwa die vielfältigen Körperfunktionen, die sich durch Magnetfelder äußern.

„Verglichen mit bekannten Maßstäben entspricht unsere Messung dem Auffinden eines Sandkorns im Gebirge: Wir können über verhältnismäßig große Distanzen Magnetfelder messen, die annähernd eine Million Mal kleiner sind als das Erdmagnetfeld – etwa einige Picotesla, 10 hoch -12“, erklärt Uwe Hartmann. Bislang erfassen Sensoren unter normalen Bedingungen nur Magnetfelder, die etwa tausend Mal kleiner sind als das Erdmagnetfeld.

Die eigentliche Herausforderung lag weniger im kaum messbar kleinen Signal selbst. „Das Hauptproblem ist, diese Signale in einer gewöhnlichen Umgebung aus einer Vielzahl von Störsignalen sauber herauszulesen“, sagt Hartmann.

Denn alles Mögliche verrauscht, überlagert und verfälscht das Messsignal, das eigentlich interessiert – angefangen vom Erdmagnetfeld über Elektrogeräte, vorbeifahrende Autos bis hin zu Signalen anderer Organe oder gar Sonnenstürme.

Hartmanns Arbeitsgruppe forscht seit Jahren an den Magnetfeldsensoren und entwickelt diese für verschiedenste Anwendungen beständig weiter. „Wir haben unsere Sensoren in den vergangenen Jahren kontinuierlich sensibler und selektiver gemacht. Durch diese fortwährende Weiterentwicklung der Sensoren, ihres Materials und vor allem auch der Software zur Datenverarbeitung wurde die jetzt erreichte Empfindlichkeit möglich“, erläutert er.

Hartmann und sein Team haben in verschiedenen Projekten daran gearbeitet, aus Messsignalen Störungen herauszufiltern. So haben die Forscher ein Sensor-Kabel entwickelt, in dem Magnetfeldsensoren miteinander verbunden und vernetzt sind. Verschiedene solcher Systeme sind bereits als Verkehrsleitsysteme zum Beispiel an Flughäfen testweise im Einsatz.

Um das Sensorsystem auch zur Überwachung an Zaunanlagen einsetzen zu können, haben die Forscher in vielen Versuchsreihen etliche Arten von Änderungen des Magnetfeldes simuliert und den jeweiligen Ursachen zugeordnet – etwa von Erschütterungen an Zäunen. Je nach Art der Störung unterscheiden sich die Signalmuster, die die Sensoren messen.

Die Physiker haben die Datenmuster mathematisch modelliert, in Algorithmen übersetzt und die Auswerteeinheit immer detailreicher programmiert und verfeinert. „Mit diesen Informationen haben wir das System angelernt und immer weiter ausgebaut. Es erkennt typische Muster, ordnet sie selbstständig Störungen zu. Wir können Messwerte und Signalmuster inzwischen sehr genau ihren Ursachen zuordnen“, erläutert Hartmann.

Noch handelt es sich um ein Ergebnis der Grundlagenforschung. Die möglichen Anwendungsfelder der hoch empfindlichen Magnetfeldsensoren sind jedoch vielfältig: Sie können in der Medizin Einsatz finden und in Kardiologie oder Neurologie Ergänzung zu EKG (Elektrokardiographie) oder EEG (Elektroenzephalographie) sein. Auch können sie bei geophysikalischen Untersuchungen helfen, Erdöl, Erze oder archäologische Funde aufzuspüren.

Auf der Hannover Messe suchen die Forscher Partner aus der Wirtschaft vor allem auch aus der Medizintechnik, um ihre Ergebnisse für den praktischen Einsatz weiterzuentwickeln.

Am Forschungsstand in Halle 2 (B46) demonstrieren sie die Empfindlichkeit ihrer Sensoren: Unter anderem detektieren die Forscher unerwartet magnetische Objekte aus der Umwelt.

Die Forschung wurde unter anderem von der Europäischen Union, der Deutschen Forschungsgemeinschaft und dem Bundesforschungsministerium gefördert.

Pressefotos für den kostenlosen Gebrauch finden Sie unter
https://www.uni-saarland.de/universitaet/aktuell/pm/pressefotos.html. Bitte beachten Sie die Nutzungsbedingungen.

Englische Version dieser Pressemitteilung:
https://www.uni-saarland.de/nc/universitaet/aktuell/artikel/nr/20573.html

Der saarländische Forschungsstand wird organisiert von der Kontaktstelle für Wissens- und Technologietransfer der Universität des Saarlandes (KWT). Sie ist zentraler Ansprechpartner für Unternehmen und initiiert unter anderem Kooperationen mit Saarbrücker Forschern. www.uni-saarland.de/kwt

Wissenschaftliche Ansprechpartner:

Kontakt für die Medien:
Prof. Dr. Uwe Hartmann, Lehrstuhl für Nanostrukturforschung und Nanotechnologie der Universität des Saarlandes: Tel.: (0681) 302-3799 oder -3798; E-Mail: u.hartmann@mx.uni-saarland.de
Dr. Haibin Gao Tel: (0681) 302-3654; E-Mail: h.gao@mx.uni-saarland.de

Hinweis für Hörfunk-Journalisten: Telefoninterviews in Studioqualität sind möglich über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Kontakt: 0681/302-2601, oder -64091.

Claudia Ehrlich | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Mit elektrischer Hirnstimulation ADHS-Patienten helfen
18.03.2019 | Carl von Ossietzky-Universität Oldenburg

nachricht So klingt Arthrose: Schalldiagnostik hat Potenzial frühe Knorpelschäden zu erkennen
18.03.2019 | Hochschule Fulda

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Im Focus: Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt

TWINCORE-Forscher entschlüsseln, wie der Transport von Antigenfragmenten auf die Oberfläche von Immunzellen des Menschen reguliert wird

Dendritische Zellen sind die Wächter unserer Immunabwehr. Sie lauern fremden Eindringlingen auf, schlucken sie, zerlegen sie in Bruchstücke und präsentieren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Innovative Zusatzwerkstoffe für den 3D-Druck machen komplexe Metallbauteile hochfest und leicht

22.03.2019 | Materialwissenschaften

Alarm! Wie verletzte Pflanzenzellen ihre Nachbarn warnen

22.03.2019 | Biowissenschaften Chemie

Magnetische Mikroboote

21.03.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics