Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschende der Universität Stuttgart entwickeln nadelspitzengroßes Miniaturlabor

07.02.2020

Haarfein operieren, gleichmäßig inhalieren: Während in der Elektrotechnik die Miniaturisierung weit vorangeschritten ist, füllt die Analyse- und Prozesstechnik in Medizin und Biochemie heute noch ganze Labore. Forschende der Universität Stuttgart und des Center for Free-Electron Laser Science (CFEL) in Hamburg haben nun eine Methode entwickelt, mit der sich ein Labor auf die Größe einer Nadelspitze miniaturisieren lässt. Sie setzen dabei auf Kurzpulslaser, Fotolack und 3D-Druck. Die Methode eröffnet eine neue Ära biomedizinischer Anwendungen, etwa in der Formulierung von Medikamenten oder für minimalinvasive Operationstechniken. Das Fachmagazin Nature Communications* berichtete darüber.

3D-Druck hat in den letzten Jahren die Herstellung von komplizierten Formen revolutioniert. Mithilfe von serieller Auftragung, bei der Punkt für Punkt oder Linie für Linie geschrieben wird, können auch die komplexesten Bauteile schnell und einfach realisiert werden.


Elektronenmikroskopische Aufnahme einer leeren Mischdüse (links), sowie röntgentomographische Funktionsanalyse (rechts). Das Strömungsverhalten der Flüssigkeit wurde mikrometergenau aufgelöst

Abbildung: Universität Stuttgart / IBBS

Um diese Methode nun auch für die Laborminiaturisierung zu erschließen, stellte das Forscherteam mit Hilfe eines Kurzpulslasers in Kombination mit optischem Fotolack kompakte Prozessoren für Flüssigkeiten her, die kaum größer sind als die Spitze eines menschlichen Haares. Dabei wurden integrierte Schaltkreise für Flüssigkeiten als Netzwerk feinster Kanäle konstruiert.

„Traditionell wurden die verschiedenen Funktionenteile wie Buchstaben beim Buchdruck auf einer Ebene zu einem Satz nebeneinandergelegt. In unserem neuen Ansatz konnten wir die ‚Buchstaben‘ jetzt so ineinander verknoten, dass fast nur noch Tinte ohne Zwischenräume übrigblieb“, erklärt Projektleiter Jun. Prof. Michael Heymann, der seit Oktober 2019 die Gruppe Intelligente Biointegrative Systeme am Institut für Biomolekulare Systeme und Biomaterialien der Universität Stuttgart leitet.

Besonders schwierig sei es gewesen, die gewünschte Funktion der Prototypen zu validieren: „Das ist, wie wenn man eine zusammengeknüllte Zeitung lesen will.“ Zum Auslesen der kompliziert verknoteten Reaktionsnetze kooperierte das Team daher mit Experten für Röntgentomographie am DESY in Hamburg und am Paul-Scherer-Institute in der Schweiz.

Diese verfügen über eine neue Leselupe, die das Reaktionsnetz nicht nur zurückvergrößern, sondern gleichzeitig auch den Textknoten wieder zu einer lesbaren Buchseite entzerren kann.

Röntgenblitze durch winzigen Wasserstrahl

Die große Präzision des neuen Fertigungsverfahren erlaubte es dem Team, Spezialdüsen für die räumliche Strukturauflösung biologischer Moleküle zu optimieren. Dazu erzeugten die Forschenden einen Wasserstrahl mit einem Durchmesser von weniger als einem tausendstel Millimeter, um die biologischen Moleküle mit Röntgenblitzen zu durchleuchten.

Aus vielen Einzelbildern kann die atomare Architektur der biologischen Moleküle mit hoher Qualität errechnet werden. Ferner gelang es den Forschenden, besonders effiziente Mischer zu optimieren, so dass biochemische Reaktionen kontrolliert gestartet werden können.

Das Team plant, diese zur Aufzeichnung von Serien-Schnappschüssen von biochemischen Reaktionsabläufen zwischen Enzymen und ihren Substraten zu verwenden. Der Röntgenlaser ließe sich als eine Art Filmkamera verwenden, um molekulare Dynamiken wie etwa die Interaktion eines medizinischen Wirkstoffs mit dem Zielprotein besser zu verstehen.

Vielfältige Anwendungen in der Medizin

Die höchst miniaturisierten Düsen und Mischer ermöglichen aber auch ganz neuartige biomedizinische Anwendungen. So lassen sich mit der Technologie zum Beispiel haarfeine, flexible Endoskope verwirklichen, mit denen man auch in kleinsten Körperöffnungen oder Maschinen Operationen und Untersuchungen vornehmen kann.

Ebenso kann die Formulierung von Medikamenten verbessert werden. Zum Beispiel ist es heute noch technisch schwierig, Wirkstoffe für Asthma-Patienten optimal zu zerstäuben.

Aus handelsüblichen Inhalatoren gelangt nur ein sehr geringer Anteil des Wirkstoffes tatsächlich in die Lunge des Patienten. Die kompakten 3D-Düsen sollen ein gleichmäßigeres Versprühen ermöglichen und so ungewollte Nebenwirkungen gerade bei chronischen Patienten reduzieren.

Wissenschaftliche Ansprechpartner:

Jun.-Prof. Dr. Michael Heymann, Universität Stuttgart, Institut für Biomaterialien und biomolekulare Systeme, Tel.: +49 (0)711/685 61686
Email: michael.heymann (at) bio.uni-stuttgart.de

Originalpublikation:

J. Knoska, et al., M. Heymann: Ultracompact 3D microfluidics for time-resolved structural biology, Nature Communications, (2020);
DOI: 10.1038/s41467-020-14434-6

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Lichtorgel im Ohr: Erstmals Einsatz von vielkanaligen Cochlea-Implantaten mit Mikro-Leuchtdioden
06.07.2020 | Universitätsmedizin Göttingen - Georg-August-Universität

nachricht Wird Telemonitoring zur Routineversorgung bei Herzinsuffizienz?
02.07.2020 | Universitätsklinikum Würzburg

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Löchrige Graphenbänder mit Stickstoff für Elektronik und Quantencomputing

08.07.2020 | Materialwissenschaften

Graphen: Auf den Belag kommt es an

08.07.2020 | Materialwissenschaften

Enzyme als Doppelagenten: Neuer Mechanismus bei der Proteinmodifikation entdeckt

08.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics