Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrische Geistesblitze: Gehirnstimulation in Dortmund

24.06.2015

Welcher Gehirnbereich ist für welche Aufgaben zuständig? Wie kann man das Gehirn nach einem Schlaganfall besser wieder anregen? Diese Fragen klärt Prof. Dr. med. Michael Nitsche fortan am IfADo - Leibniz-Institut für Arbeitsforschung an der TU Dortmund mittels Hirnstimulation. Der Neurologe aus Göttingen folgt einem Ruf der TU Dortmund und wird nun den neuen Forschungsbereich „Psychologie und Neurowissenschaften“ am IfADo aufbauen.

Bei der transkraniellen Hirnstimulation können mit Hilfe magnetischer oder elektrischer Felder gezielt Gehirnareale stimuliert werden, sodass ihre Aktivität verstärkt oder aber gehemmt wird. Für Laien mag sich das etwas gruselig anhören – immerhin haben die Vorläufer dieser Methode Mary Shelley zum Roman Frankenstein motiviert.

Mit Frankenstein hat das heutige Vorgehen jedoch nichts gemein. Im Gegenteil: Forscher sehen in der transkraniellen Hirnstimulation großes Potenzial zur Heilung neurologischer, psychischer Erkrankungen wie z.B. Depressionen oder auch Folgen eines Schlaganfalls.

Diesen wegweisenden Forschungszweig wird Prof. Dr. med. Michael Nitsche nun am IfADo aufbauen. „Es ist zwar einiges auf dem Gebiet physiologischer Grundlagen kognitiver Funktionen bekannt, aber wir sind immer noch weit davon entfernt das Gehirn zu verstehen“, sagt Nitsche.

Mittels Hirnstimulation will er das Wissen über Aufbau, Funktion und Interaktion bestimmter Gehirnareale vertiefen. Werden beispielweise bestimmte motorische Gehirnareale gehemmt, können bestimmte Bewegungsaufgaben nicht mehr ausgeführt werden.

Können diese jedoch trotzdem ausgeführt werden, weiß man, das entsprechende Gehirnareal verarbeitet etwas, was mit dieser Bewegung nicht in Zusammenhang steht. „Dadurch lassen sich kausale Zusammenhänge zwischen der Gehirnaktivität und bestimmten Tätigkeiten aufzeigen“, betont Nitsche.

Neben dem Verständnis des Gehirns geht es Nitsche darum, „Möglichkeiten aufzugreifen, wie sich Therapien optimieren lassen und welche Empfehlungen wir geben können, um bestimmte Leistungen wieder herzustellen.“ Bereits im Jahr 2005 konnte Nitsche nachweisen, dass die Hirnstimulation einen positiven Einfluss auf motorisches Lernen beispielsweise bei Schlaganfallpatienten hat.

Methoden der Hirnstimulation

Nervenzellen kommunizieren auf elektrischem Wege untereinander. Dies macht sich die transkranielle Hirnstimulation zu Nutze, indem sie die Signalverarbeitung der Nervenzellen beeinflusst. Drei Methoden haben sich inzwischen als tauglich erwiesen: Hirnstimulation durch Gleich- (tDCS) oder Wechselstrom (tACS) und mittels Magnetfeldern (TMS).

Dabei werden mit Elektroden oder aber Magnetspulen elektrische oder magnetische Felder erzeugt, die durch die Kopfhaut und den Schädel hindurch die äußeren Bereiche des Gehirns – den sogenannten Cortex – anregen. Dadurch wird die Aktivität der Nervenzellen gezielt in den gewünschten Bereichen des Gehirns verstärkt oder gehemmt.

Bei depressiven Patienten erzielte diese Methode bereits positive Resultate. Um Unannehmlichkeiten und Nebenwirkungen zu vermeiden, müssen bestimmte Sicherheitsprotokolle eingehalten werden, die die Stromintensität und Dauer der Behandlung festlegen.

Lebenslauf Prof. Dr. med. Michael Nitsche

Prof. Dr. med. Michael Nitsche studierte Psychologie und Medizin an der Georg-August-Universität Göttingen. Seit 1999 war der gebürtige Braunschweiger als Arzt in der Klinik für Klinische Neurophysiologie in Göttingen tätig. Zu seinen Forschungsschwerpunkten zählt Epileptologie, Neuroplastizität, Neuropsychopharmakologie, kognitive Neurologie und nicht-invasive Hirnstimulation. 2006 erhielt Nitsche die Venia legendi für das Fach Neurologie. Der Neurologe bereichert ab nächstem Semester die Lehre an der TU Dortmund. Am IfADo tritt Nitsche die Nachfolge von Prof. Dr. Herbert Heuer an, der im Jahr 2014 emeritierte, und baut den Forschungsbereich „Psychologie und Neurowissenschaften“ auf.

Ansprechpartner:
Prof. Dr. med. Michael Nitsche
Leiter des Forschungsbereichs „Psychologie und Neurowissenschaften“
Telefon: + 49 231 1084-301
E-Mail: nitsche@ifado.de

Das IfADo - Leibniz-Institut für Arbeitsforschung an der TU Dortmund erforscht die Potenziale und Risiken moderner Arbeit auf lebens- und verhaltenswissenschaftlicher Grundlage. Aus den Ergebnissen werden Prinzipien der leistungs- und gesundheitsförderlichen Gestaltung der Arbeitswelt abgeleitet. Das IfADo hat mehr als 230 Mitarbeiter/innen aus naturwissenschaftlichen und technischen Disziplinen. Das Institut ist Mitglied der Leibniz-Gemeinschaft, die 89 selbstständige Einrichtungen umfasst. Die Leibniz-Institute beschäftigen rund 18.100 Personen, darunter 9.200 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,64 Milliarden Euro.  

Verena Schreiber | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ifado.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Speiseröhren-Erkrankungen schonend diagnostizieren
10.09.2019 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Beinprothese mit Gespür verbessert die Gesundheit
09.09.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Meilensteine auf dem Weg zur Atomkern-Uhr

Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt.

Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die...

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Künstliche Intelligenz bringt Licht ins Dunkel

Die Vorhersage von durch Licht ausgelösten molekularen Reaktionen ist bis dato extrem rechenaufwendig. Ein Team um Philipp Marquetand von der Fakultät für Chemie der Universitäten Wien hat nun unter Nutzung von künstlichen neuronalen Netzen ein Verfahren vorgestellt, welches die Simulation von photoinduzierten Prozessen drastisch beschleunigt. Das Verfahren bietet neue Möglichkeiten, biologische Prozesse wie erste Schritte der Krebsentstehung oder Alterungsprozesse von Materie besser zu verstehen. Die Studie erschien in der aktuellen Ausgabe der Fachzeitschrift "Chemical Science" und eine zugehörige Illustration auf einem der Cover.

Maschinelles Lernen spielt in der chemischen Forschung eine immer größere Rolle, z.B. bei der Entdeckung und Entwicklung neuer Moleküle und Materialien. In...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungen

Wie verändert Autonomes Fahren unseren Alltag?

12.09.2019 | Veranstaltungen

Künstliche Intelligenz – Wie können wir Algorithmen vertrauen?

11.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungsnachrichten

Toxoplasmose-Erreger: Recyclingmechanismus stellt Vermehrung des Parasits Toxoplasma gondii sicher

13.09.2019 | Biowissenschaften Chemie

Hoher Wert für die Hubble-Konstante mit Hilfe von Gravitationslinsen

13.09.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics