Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die lösliche Schraube

06.11.2019

Wo Knochen bersten, müssen Chirurgen die Bruchstücke mit Implantaten zusammenfügen. Orthopädische Schrauben aus Magnesium, die sich mit der Zeit im Körper auflösen, ersparen Patienten eine weitere Operation nach der Heilung und mindern das Infektionsrisiko. Was mit derartigen Implantaten im Körper passiert, ist indes weitgehend unbekannt. Empa-Forscher analysieren die Korrosionsmechanismen von Magnesium, um optimale Legierungen und orthopädische Schrauben mit funktionalisierten Oberflächen zu entwickeln.

Wenn Chirurgen nach einem Knochenbruch die Fragmente und Splitter des Knochens am ursprünglichen Ort fixieren möchten, stellt sich die Frage, welche Art von Implantaten sie hierzu einsetzen sollen.


Der Empa-Forscher Arie Bruinink hat Flusszellen für die Untersuchung von Magnesiumlegierungen entwickelt, bei denen die Säureregulierung dem menschlichen Körper nachempfunden ist.

Empa

Schrauben und Platten aus Titan oder Stahl, die im Körper mechanisch und chemisch sehr stabil sind, jedoch später durch einen zweiten Eingriff wieder entfernt werden müssen? Oder Implantate aus organischen Materialien, die sich mit der Zeit auflösen, aber mit gewissen anderen Nachteilen behaftet sein können, wie mangelnde Festigkeit oder ungünstige Abbauprodukte?

Forscher der Empa arbeiten derzeit an einem Ausweg aus dem Dilemma: Kleine Implantate und Schrauben aus Magnesium, die zunächst mechanisch stabil sind und deren kontrollierte Auflösung im Körper später nicht zu Gewebeschäden führt.

Besonders interessant sind derartige Magnesium-Implantate für die medizinisch-orthopädische Anwendung bei Kindern, deren Knochen rasant wach- sen. Die bioabbaubaren Schrauben beeinträchtigen das kindliche Knochenwachstum nicht und ersparen den kleinen Patienten eine zweite Operation. Zudem lassen sich so die Risiken einer Infektion mindern und Kosten sparen.

«Magnesium stellt man sich zwar eher als ein weisses Pulver vor, das häufig als Nahrungsergänzungsmittel eingenommen wird», sagt Arie Bruinink von der Empa-Abteilung «Fügetechnologie und Korrosion». «Implantate aus Magnesiumlegierungen sind jedoch nicht nur biokompatibel, sondern weisen darüber hinaus in der ersten heiklen Heilungsphase mechanische Eigenschaften auf, die knochenähnlich und daher sogar geeigneter sind als jene von Titan.»

Der Segen einer resorbierbaren Schraube kann unter Umständen auch ihr Fluch sein: Denn der Prozess der Auflösung ist mit komplexen Korrosionsprozessen und daraus resultierender Oberflächenumwandlung und Produktbildung verbunden.

Je nach Art der Magnesiumlegierung kann aufgrund des zu geringen Korrosionswiderstands beim Abbau Wasserstoffgas entstehen, und zwar in einem Ausmass, dass sogar ein Gaskissen unter der Haut des Patienten entsteht.

Zwar ist durchaus bezweckt, dass Magnesium- schrauben mittels Korrosion abgebaut werden, bei der Magnesium oxidiert und Wasserstoff freigesetzt wird. Bildet sich aber schlagartig mehr Wasserstoffgas, als der Körper ad hoc entfernen kann, wird der Heilungsverlauf des fragilen Knochens gestört.

Nun ist aber genau diese Biokorrosion, denen eine Magnesiumschraube ausgesetzt ist, ein bislang wenig verstandener Vorgang. Hier kommen die Korrosionsforscher der Empa ins Spiel, die mit eigens entwickelten Analyseverfahren die Biokorrosion im Körper unter möglichst realistischen Bedingungen abbilden.

Das Ziel: optimale Legierungen aus Magnesium und anderen biokompatiblen Elementen sowie neue Oberflächenfunktionen für resorbierbare Magnesiumschrauben. Letztlich ist ein langsamer, kontrollierter Abbau der Implantate gefragt, bei dem sich keine Gasblasen im Gewebe bilden.

«Bisher ist bereits klar, dass die Reaktion je nach Säuregehalt des Gewebes unterschiedlich abläuft», erklärt Bruinink. In leicht saurer Umgebung bilden sich grosse Mengen an Wasserstoffgas bei der Magnesiumkorrosion; bei einem pH-Wert im alkalischen Bereich entstehen unter anderem Carbonat-haltige Produkte, die den gewünschten Abbau sogar blockieren können.

In neutralem Milieu bei einem pH-Wert von 7,4, wie etwa im Blut, entstehen hingegen Magnesiumhydroxide und Phosphatprodukte, die die weitere Korrosion zumindest einschränken. Blut vermag – als potenter Puffer – seinen pH-Wert permanent in konstantem Rahmen zu halten. Bisher seien herkömmliche Magnesiumimplantate mit vergleichbar potenten, aber nicht physiologischen Puffern im Labor analysiert worden, so Bruinink. Für realitätsnah hält er dieses Vorgehen nicht.


«Blut ist ein ganz besonderer Saft» – so lässt sich Goethes rastlose Forscherfigur Faust zitieren. Ob Doktor Faust auch etwas über die sogenannte interstitielle Flüssigkeit oder Gewebsflüssigkeit zu sagen wusste, ist nicht überliefert. Dabei übertrifft die salzhaltige Flüssigkeit mit ihren rund zehn Litern das Volumen von Blut im menschlichen Körper bei Weitem. Gemächlich gleitet der unterschätzte Saft zwischen den Geweben und Zellen im hundertfach verlangsamten Tempo einer Schnecke. Und gerade diese interstitielle Flüssigkeit ist von entscheidender Bedeutung, will man neue Implantate entwickeln. Denn der Heilungsprozess des Bruchs, der von Immunzellen gesteuert wird und ein harmonisches Gefüge von Knochenabbau und Neuaufbau ergeben soll, ist vornehmlich in interstitielle Flüssigkeit eingebettet.

Der Säuregrad der Gewebsflüssigkeit ist allerdings viel grösseren Schwankungen ausgesetzt als jener von Blut. Abhängig von Körperteil und Gewebezustand, können unterschiedliche Einflüsse auf die eingesetzte Schraube einwirken. Um eine realitätsnahe Vorhersage zum Verlauf der Biokorrosion im Körper zu machen, hat Bruinink experimentelle Analysegeräte und Fliesszellen entwickelt, bei denen die pH-Regulierung dem Körper nachempfunden ist. In einer Batterie von zehn Flusszellen spannt der Forscher beispielsweise Proben von Magnesiumlegierungen ein, die von naturgetreuer interstitieller Flüssigkeit umspült werden – und zwar mit der gleichen Langsamkeit wie im menschlichen Körper.

An den kleinen Flusszellen werden derzeit neben pH-Messungen auch detaillierte elektrochemische Charakterisierungen durchgeführt. Ausgewertet werden etwa elektrochemische Potenziale, Impedanz-Änderungen der Grenzflächen als Merkmal der Korrosion und die Bildung von Wasserstoffgas. «Die Flusszelle ist ein winziges Labor, das die Realität der Biokorrosion lebensnah simuliert», so Bruinink. In einem nächsten Schritt werden die Legierungsproben im Minilabor mit lebenden Zellen zusammengebracht, um das Geschehen im Körper noch detaillierter zu imitieren. «Sobald klar ist, was tatsächlich bei der Biokorrosion mit den Magnesiumlegierungen passiert, können wir die passenden Implantate mit funktionalisierten Oberflächen, die beispielsweise die Reaktionen der biologischen Umgebung begünstigen, erzeugen», sagt der Forscher.

Wissenschaftliche Ansprechpartner:

Dr. Patrik Schmutz
Joining Technologies and Corrosion
Tel. +41 58 765 48 45
Patrik.Schmutz@empa.ch

Redaktion / Medienkontakt

Dr. Andrea Six
Kommunikation
Tel. +41 58 765 61 33
redaktion@empa.ch

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht COVID-19: TU Wien entwirft einfaches Sauerstoff-Gerät
02.04.2020 | Technische Universität Wien

nachricht Thermopiles für berührungslose Temperaturmessung beim Menschen
31.03.2020 | CiS Forschungsinstitut für Mikrosensorik GmbH

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics