Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das virtuelle Gehirn – Patientendaten ermöglichen Simulationen für das Studium der Gehirnfunktionen

31.01.2018

Wissenschaftler der Charité – Universitätsmedizin Berlin und des Berliner Instituts für Gesundheitsforschung/Berlin Institute of Health (BIH) haben durch Einbeziehung von Patientenmessdaten die Gehirnsimulationsplattform „The Virtual Brain“ weiter optimiert. Die Software wurde inzwischen fast 11.000-mal heruntergeladen, mit ihr wird mittlerweile weltweit gearbeitet und publiziert. Aktuelle Erkenntnisse wurden jetzt im Journal eLife* veröffentlicht.

Um den komplexen Aufbau und die vielfältigen Funktionen des Gehirns zu entschlüsseln, sind große Datenmengen aus verschiedensten Quellen erforderlich. Diese Daten müssen in Computersimulationen wie Puzzleteile zusammengeführt werden, um die Mechanismen von Gehirnfunktion zu verstehen. Zu diesem Zweck wurde die Gehirnsimulationsplattform „The Virtual Brain“ entwickelt.


The Virtual Brain ist eine Open-source-Software zur personalisierten Simulation von Gehirnen

Jessica Palmer/The Virtual Brain


Die Virtual-Brain-Software im Einsatz

The Virtual Brain

Sie ist in der Lage, die Messdaten einer Person in individuellen, patientenspezifischen Modellen zu vereinigen. Die Software simuliert anhand der Daten Patientengehirne und wird wie ein mathematisches Mikroskop eingesetzt: So lassen sich sogar Interaktionen zwischen Nervenzellen nachzuvollziehen, die am Menschen nicht direkt messbar sind.

Mit dieser Methode ziehen die Wissenschaftler Rückschlüsse, wie die neuronalen Schaltkreise des Gehirns miteinander interagieren, die den beobachteten Gehirnsignalen zugrunde liegen. Das internationale Projekt wird von Prof. Dr. Petra Ritter von der Klinik für Neurologie mit Experimenteller Neurologie mit zwei Kollegen aus Toronto und Marseille geleitet.

„The Virtual Brain“ ging 2012 als Open-source-Simulationsplattform an den Start. Unter Leitung von Prof. Ritter haben die Wissenschaftler der Abteilung für Gehirnsimulation an der Klinik für Neurologie einen innovativen Ansatz entwickelt. Eine Art Haube zeichnet die messbaren elektrischen Gehirnsignale von der Kopfoberfläche eines Patienten als Elektroenzephalogramm (EEG) auf.

Diese Informationen werden anschließend in das personalisierte Computermodell integriert. Das Modell simuliert dann Hirnaktivitäten, die sich sonst nur in einem großen Bildgebungsgerät, dem Magnetresonanztomografen, messen lassen. Tatsächlich ließen sich mit dem Modell sechs verschiedene Prinzipen von Gehirnaktivität berechnen, die bisher nur teilweise und invasiv am Tier messbar waren.

Das Modell konnte dabei genau beschreiben, wie diese Prozesse zusammenwirken, um bestimmte Gehirnfunktionen zu erzeugen. Damit bestätigte sich die Hypothese, dass durch die Einbindung von EEG-Daten in das Computermodell sehr viel genauere Gehirnsimulationen möglich sind. Sie gestatten es, Gehirnprozesse räumlich und örtlich besser aufzulösen und somit besser zu verstehen.

„Die neue Methode der Gehirnsimulation erlaubt es, Messdaten und Theorien zur Funktionsweise des Nervensystems in einem umfassenden physiologisch und anatomisch realistischen Modell zu vereinen“ erklärt Prof. Ritter. Ein solches Verfahren ist in vielen Bereichen der Neurowissenschaft von großem Nutzen, um neue Hypothesen aufzustellen und zu testen. Die Konstruktion individueller Modelle anhand von Patientendaten ist hierbei ein speziell entwickelter Ansatz. Sie haben das Potential, bei gesunden ebenso wie bei kranken Personen individuelle Unterschiede in der Funktionsweise des Gehirns aufzudecken.

Im nächsten Schritt werden größere Gruppen von Patienten untersucht, um z.B. die Mechanismen bei Epilepsie, Schlaganfall und Demenz zu entschlüsseln. Prof. Ritter über die aktuelle Forschung: „Die Software hat das Potential Patienten direkt zu helfen. In einer in Frankreich gestarteten klinischen Studie wird aktuell getestet, wie die Technologie bei chirurgischen Eingriffen die Heilung von Epilepsie unterstützen kann.

Neurochirurgen simulieren den Eingriff zunächst am virtuellen Gehirn des Patienten und können so das Ergebnis optimieren.“ Aber auch die breite Bevölkerung könnte bald vom „Virtual Brain“ profitieren. Die an der Charité entwickelte BrainModes-App für Smartphones und Tablets erlaubt es mit kommerziell erhältlichen Neuroheadsets das eigene Gehirn besser kennenzulernen.

Die Forscher an der Charité unter Leitung von Prof. Ritter werden diese Technologie weiterentwickeln, so dass sie in Zukunft auch die Steuerung von Maschinen, Computern und Exoskeletten durch Gedanken ermöglicht.

*Inferring multi-scale neural mechanisms with brain network modelling. Michael Schirner, Anthony Randal McIntosh, Viktor K. Jirsa, Gustavo Deco, Petra Ritter. eLife 2018;7:e28927 doi: 10.7554/eLife.28927

Kontakt:
Prof. Dr. Petra Ritter
Klinik für Neurologie mit Experimenteller Neurologie an der
Charité – Universitätsmedizin Berlin und
Berliner Institut für Gesundheitsforschung/Berlin Institute of Health (BIH)
t: +49 30 450 560 005
E-Mail: petra.ritter[at]charite.de

Links
- Klinik für Neurologie mit Experimenteller Neurologie
https://neurologie.charite.de/
- Webseite „The Virtual Brain“
http://www.thevirtualbrain.org/
- BrainModes Group - Petra Ritter
https://neurologie.charite.de/forschung/arbeitsgruppen/brainmodes_group_petra_ri...
- BrainModes
http://brainmodes.com/
- Virtual Brain Workshop am 26.02.2018 an der Charité:
http://www.thevirtualbrain.org/tvb/zwei/newswire-event-single/187316-workshop-tv...
- Originalpublikation eLife
https://elifesciences.org/articles/28927

Manuela Zingl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Krebs mit Sauerstoff sichtbar machen
19.02.2020 | Deutsches Krebsforschungszentrum

nachricht Mit Lasertechnik die Krebstherapie verbessern
13.02.2020 | Leuphana Universität Lüneburg

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics