Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Gamma Knife Hirntumore sanft entfernen

03.03.2006


Experten informieren über moderne Radiochirurgie mit dem Gamma Knife auf einer Fortbildung der Landesärztekammer Hessen und des Universitätsklinikums Frankfurt am Main.

Mit der"sanften" Chirurgie des strahlenbasierten Eingriffs zerstört die radiochirurgische Medizin Tumore im menschlichen Gehirn, ohne operationstypische Spuren zu hinterlassen. Das so genannte Gamma Knife, auch "Strahlenskalpell" genannt, behandelt Erkrankungen im Schädelinnern des Patienten durch Bestrahlung schonend, effizient und sicher. Vom schwedischen Neurochirurgen Lars Leksell entwickelt und 1968 erstmals erprobt, wird diese Behandlungsmethode weltweit umfangreich als Alternative oder im Rahmen multimodaler, interdisziplinäre Therapiekonzepte in der Neurochirurgie zunehmend wichtiger und ihre Einsatzmöglichkeiten vielfältiger: Neben Gehirn- und Schädelbasistumoren, werden mit Hilfe des Gamma Knife unter anderem Gefäßmalformationen, Tumore im Auge und funktionelle Erkrankungen wie z. B. die Trigeminusneuralgie behandelt.

Diese Vielfalt ist Thema der gemeinsamen neurochirurgischen Fortbildung der Akademie für Ärztliche Fort- und Weiterbildung der Landesärztekammer Hessen und des Gamma Knife Zentrums am Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, die am 04. März 2006 in Bad Nauheim stattfindet. Experten des Universitätsklinikums Frankfurt und weiterer Gamma Knife-Zentren in Deutschland und Österreich stellen in ihren Vorträgen aus neurochirurgischer und strahlentherapeutischer Sicht die Entwicklung, Technik und Anwendungsgebiete des Gamma Knife vor und diskutieren diese mit den Teilnehmern. Die Veranstaltung mit dem Titel "Gamma Knife Radiochirurgie - Einsatzmöglichkeiten im Rahmen moderner, interdisziplinärer Therapiestrategien" wird von Dr. med. Robert Wolff, Neurochirurg und Leiter des Gamma Knife Zentrums am Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main und Professor Dr. med. V. Seifert, Direktor der Klinik für Neurochirurgie am Universitätsklinikum Frankfurt am Main geleitet.

Präzision bis in den Submillimeterbereich senkt Risiko

Besonders bei der chirurgischen Behandlung von Erkrankungen wie Schädelbasistumoren, Metastasen, arterio-venösen Angiomen sowie der Trigeminusneuralgie ist Präzision bis in den Submillimeterbereich erfolgsentscheidend. Tief liegende Tumore, Metastasen und Gefäßmissbildungen zu operieren ist mit einem hohen Risiko für das umliegende gesunde Gewebe im betroffenen Areal verbunden. Das Gamma Knife reduziert dieses Risiko, da es im Submillimeterbereich operiert und den "Eingriff" punktgenau auf den Krankheitsherd begrenzt. Ohne operativen Eingriff können mit Hilfe des Strahlenskalpells tief liegende Hirntumore von bis zu 3,5 Zentimetern Durchmesser oder Gefäßfehlbildungen inaktiviert werden. "Besonders bei der Entfernung von Akustikusneurinomen agiert das Gamma Knife als Ergänzung zur mikrochirurgischen Operation, wenn bei sehr großen Tumoren zunächst eine mikrochirurgische Teilentfernung mit anschließender Radiochirurgie erfolgt, um das Risiko niedrig zu halten", erklärt Neurochirurg Dr. Wolff.

Das Gerät funktioniert über 201 kreisförmig angeordnete Strahlenquellen, die nur in der Bündelung ihre volle Wirkung entfalten.

Die Behandlung, die fast immer ambulant oder im Rahmen eines kurzstationären Aufenthaltes erfolgt, teilt sich auf in Planungsphase und Strahlungsbehandlung. Zunächst wird der Kopf des Patienten in einem stereotaktischen Rahmen verankert. Spezielle Markierungen am Rahmen erlauben es dem Mediziner, mit Hilfe von Computerdaten ein dreidimensionales Bestrahlungsfeld zu berechnen. Dieses Feld bildet die Form des Krankheitsherdes möglichst exakt nach. Je nach Art der Erkrankung kann die bildgebende Diagnostik noch um zusätzliche Untersuchungstechnologien erweitert werden, die die Zuordnung von Bestrahlungsfeld und Krankheitsherd verfeinern: Eine Analyse der Feinanatomie des Gehirns des Patienten erfolgt mit Hilfe von Magnetresonanztomografie (MRT) oder Computertomografie (CT), eine Gefäßdarstellung nimmt der Mediziner mit Hilfe einer digitalen Subtraktionsangiografie (DSA) vor. Diese Bildinformationen stellen die Basis für die Diagnostik, Operationsplanung und Nachfolgeuntersuchung dar.

Den Erhalt gesunden Gewebes steigern

Bei der eigentlichen radiochirurgischen Behandlung wird der Patient mehrmals in das Bestrahlungsgerät gefahren, das den gesamten Krankheitsherd des Patienten Strahlenpunkt für Strahlenpunkt (Isozentren) bestrahlt. Nach circa ein bis zwei Stunden ist die Bestrahlung beendet. Nach erfolgter Abtötung des Krankheitsherds muss sich der Patient einer regelmäßigen Nachkontrolle unterziehen um den Behandlungserfolg immer wieder nachprüfen zu können. Das Strahlenskalpell erweist sich dabei sehr häufig als sehr effektives, präzises und sehr sicheres Instrument zur Bekämpfung im Kopf befindlicher Tumore, Angiome und anderer Läsionen. "Das Gamma Knife hilft dem Chirurgen, einen Tumor möglichst vollständig unter Erhaltung wichtiger funktioneller und vaskulärer Strukturen im Gehirn des Patienten zu inaktivieren. Dieses Therapiekonzept senkt die Morbidität und Mortalität neurochirurgischer Operationen ", bringt Professor Dr. Seifert den Vorteil des Gerätes auf den Punkt. Zudem könne die zeitlich langwierige herkömmliche Strahlentherapie von mehrmonatiger Dauer vermieden werden, so Professor Seifert.

Die enge Anbindung des Therapiezentrums an das Uniklinikum Frankfurt gewährleistet dem Patienten eine umfassende und interdisziplinäre Versorgung in Diagnostik, Therapie und Nachsorge. Spezialisten der Bereiche Neurologie, Neurochirurgie, Neuroradiologie oder Onkologie kooperieren eng mit dem Gamma Knife-Team. Eben diesen therapeutischen Vorteil interdisziplinärer Behandlungskonzepte behandelt Professor Dr. Volker Seifert, Direktor der Klinik und Poliklinik für Neurochirurgie am Uniklinikum Frankfurt, in seinem Vortrag über "Kombinierte neurochirurgische-radiochirurgische Therapie von Tumoren der Schädelbasis".

Die GKF GmbH - Gamma Knife Zentrum Frankfurt des Klinikums der Johann Wolfgang Goethe-Universität Frankfurt am Main bietet als einziges Therapiezentrum dieser Art in Hessen seit 2001 die lokal applizierte strahlenbasierte "sanfte" radiochirurgische Behandlung an. Mit der Fortbildung erhalten Mediziner wichtige Informationen, um sich in dieser fachlich sehr anspruchsvollen Therapieform weiterzubilden.

Für weitere Informationen:

Dr. med. Robert Wolff
Gamma Knife Zentrum
Klinikum der J.W. Goethe-Universität Frankfurt/ Main
Fon (0 69) 67735910
Fax (0 69) 667735911
E-Mail r.wolff@gkfrankfurt.de

Prof. Dr. med. Volker Seifert
Klinik und Poliklinik für Neurochirurgie
Klinikum der J.W. Goethe-Universität Frankfurt/ Main
Fon (0 69) 63 01 - 52 95
Fax (0 69) 63 01 - 63 22
E-Mail v.seifert@em.uni-frankfurt.de

Ricarda Wessinghage
Presse- und Öffentlichkeitsarbeit
Klinikum der J.W. Goethe-Universität Frankfurt/ Main
Fon (0 69) 63 01 - 77 64
Fax (0 69) 63 01 - 8 32 22
E-Mail ricarda.wessinghage@kgu.de

Ricarda Wessinghage | idw
Weitere Informationen:
http://www.kgu.de
http://www.kgu.de/neurochirurgie/

Weitere Berichte zu: Neurochirurgie

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Immer mehr Patienten profitieren von Innovationen in der Gefäßmedizin
08.06.2018 | Deutsche Gesellschaft für Angiologie - Gesellschaft für Gefäßmedizin e.V.

nachricht Doppelschichtstents in der Halsschlagader schützen vor Schlaganfall
07.06.2018 | Deutsche Gesellschaft für Angiologie - Gesellschaft für Gefäßmedizin e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics