Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die richtige Verbindung kommt es an: Tiefe Hirnstimulation bei Parkinsonpatienten individuell anpassen

22.06.2017

Wissenschaftler der Charité – Universitätsmedizin Berlin sind in Kooperation mit Kollegen in Würzburg und an der Harvard Medical School der Frage nachgegangen, mit welchen Gehirnarealen bei Parkinsonpatienten eine Elektrode zur Tiefen Hirnstimulation verbunden sein sollte, damit sie ihre Wirkung voll entfalten kann. Die Forscher haben einen Weg gefunden, um anhand von Gehirnkonnektivität, also Verbindungen innerhalb des Gehirns, Vorhersagen für eine bestmögliche Linderung der Parkinsonsymptome zu treffen. Wie eine Elektrode optimal platziert werden kann, berichtet das Team jetzt im Fachmagazin Annals of Neurology*.

Das Verfahren der Tiefen Hirnstimulation (THS) ist für die Behandlung von Morbus Parkinson etabliert und führt größtenteils zu guten Ergebnissen. Symptome wie Bewegungseinschränkungen, Muskelversteifungen oder Zittern lassen sich mittels einer kleinen Elektrode, die neurochirurgisch in tiefe Strukturen des Gehirns implantiert wird, zurückdrängen. Entscheidend für eine optimale Symptomlinderung ist allerdings die exakte Lage der Elektrode.


Die tiefe Hirnstimulation zielt in Bereiche des Gehirns, durch welche zahlreiche Fasertrakte verlaufen.

Grafik: Andreas Horn, Charité


Die Zielregion der Stimulation ist orange gefärbt, die umliegenden Fasertrakte (dunkelgrün, hellgrün, gelb) verbinden die Elektrode mit entscheidenden anderen Hirnregionen.

Grafik: Andreas Horn, Charité

Zwischen der Umgebung des Implantats und anderen Gehirnregionen lassen sich charakteristische Verbindungsmuster beobachten. „Eine optimale Lage des Impulsgebers ist durch ein optimales Verbindungsprofil charakterisiert“, erklärt Dr. Andreas Horn, Wissenschaftler an der Klinik für Neurologie mit Experimenteller Neurologie der Charité.

„Für eine hohe Wirksamkeit der Behandlung sind starke Verbindungen der THS-Elektrode zu spezifischen frontalen Hirnregionen wie dem sogenannten supplementärmotorischen Areal entscheidend“, so Dr. Horn. Ein Zusammenhang, der bislang unbekannt war.

Die Forscher konnten weiterhin zeigen, dass sich auf Basis des Verbindungsprofils einer Elektrode vorhersagen lässt, wie stark sich die Bewegungseinschränkungen eines Patienten lindern lassen. Sie nutzen hierfür ein besonderes Elektrodenlokalisationsverfahren, das über mehrere Jahre hinweg an der Charité in der Arbeitsgruppe von Prof. Dr. Andrea Kühn entwickelt wurde.

Grundlage sind weiterhin präzise Gehirnkonnektivitätsatlanten, die in Kooperation mit der Harvard Medical School erstellt worden sind. Auf Basis spezieller Kernspinsequenzen von über 1000 Probanden konnten die Wissenschaftler einen „Durchschnitts-Schaltplan“ des menschlichen Gehirns berechnen. In Kombination beider Methoden lassen sich Konnektivitätsprofile für jede THS-Elektrode erstellen.

Unter Nutzung von Grundprinzipien aus dem Machine-Learning-Bereich war es schließlich möglich, ein optimales Verbindungsprofil zu berechnen und zu validieren. In etwas mehr als 90 Fällen konnten Dr. Andreas Horn und seine internationalen Kollegen dazu beitragen, Elektroden zur Tiefen Hirnstimulation hochpräzise zu platzieren.

In Folgestudien wollen die Forscher nun an einer patientenspezifisch abgestimmten, maßgeschneiderten Hirnstimulation arbeiten. Denn bereits vor Beginn der Operation zum Einsetzen der THS-Elektroden kann auf Basis von Forschungssequenzen in der Kernspintomographie das patientenspezifische Verbindungsprofil analysiert werden.

„Noch bevor der invasive Teil der Behandlung beginnt, könnte der optimale Stimulationsort patientenspezifisch festgelegt werden“, so Dr. Horn. „Wir arbeiten daran, ein Verfahren für konnektivitätsbasierte tiefe Hirnstimulation aufzubauen und in Folgestudien weiter zu validieren.“ So soll in ferner Zukunft möglich sein, die Therapie im Patienten vorab im Computer zu simulieren.

* Andreas Horn, Martin Reich, Johannes Vorwerk, Ningfei Li, Gregor Wenzel, Qianqian Fang, Tanja Schmitz-Hübsch, Robert Nickl, Andreas Kupsch, Jens Volkmann, Andrea A. Kühn, Michael D. Fox. Connectivity predicts deep brain stimulation outcome in Parkinson’s disease. Ann. Neurol. http://dx.doi.org/10.1002/ana.24974 (2017).

Kontakt:
Prof. Dr. Andrea Kühn und Dr. Andreas Horn
Klinik für Neurologie mit Experimenteller Neurologie
Sektion Bewegungsstörungen und Neuromodulation
Campus Charité Mitte
t: +49 30 450 660 203
E-Mail: andrea.kuehn@charite.de

Weitere Informationen:

http://www.charite.de
https://neurologie.charite.de/forschung/arbeitsgruppen/bewegungsstoerungen_andre...

Manuela Zingl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Weniger Schmerzen bei Nadelstichen | Infrarotlicht macht Venen kleiner Patient*innen sichtbar
18.01.2019 | Universitätsklinikum Ulm

nachricht Zum ersten Mal in der Schweiz: mikroskopische Rekonstruktion des grössten Lymphgefässes
08.01.2019 | UniversitätsSpital Zürich

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klassisches Doppelspalt-Experiment in neuem Licht

Internationale Forschergruppe entwickelt neue Röntgenspektroskopie-Methode basierend auf dem klassischen Doppelspalt-Experiment, um neue Erkenntnisse über die physikalischen Eigenschaften von Festkörpern zu gewinnen.

Einem internationalen Forscherteam unter Führung von Physikern des Sonderforschungsbereichs 1238 der Universität zu Köln ist es gelungen, eine neue Variante...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neues Material soll Grenzen der Silicium-Elektronik überwinden

21.01.2019 | Energie und Elektrotechnik

water meets....Future - Abwasser nachhaltig nutzen

21.01.2019 | Ökologie Umwelt- Naturschutz

Inbetriebnahme eines 3D-Bewegungssimulators am "kunststoffcampus bayern“ in Weißenburg

21.01.2019 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics