Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antirutsch-Implantate für Luftröhren

02.07.2012
Ist die menschliche Luftröhre verengt, lindert oft nur noch ein operativer Eingriff die Atemnot: Ärzte dehnen die defekte Trachea mit einem Stent. Doch dieses gitterartige Implantat kann verrutschen und die Atemwege ganz verschließen. Künftig soll eine spezielle Oberflächenbeschichtung für Stents das Verrutschen verhindern.

Wenn Herzkranzgefäße verengt sind, dehnen Kardiologen sie mithilfe von kleinen gitterförmigen Stützen, um einem Herzinfarkt vorzubeugen. Die Gitterröhrchen – Experten nennen sie Stents – stabilisieren die Venen und Arterien, verbessern den Blutfluss und verhindern einen Gefäßverschluss.


Eine neue Proteinbeschichtung soll dafür sorgen, dass Atem-wegsstents einerseits besser in das umgebende Luftröhrengewebe einwachsen, andererseits die Infektionsgefahr für den Patienten reduziert wird. © Leufen Medical GmbH

Weniger bekannt ist, dass sich krankhafte Verengungen der Luftröhre ebenfalls mit Stents behandeln lassen. Solche Atemwegsstenosen, deren Ursache Tumore, chronische Entzündungen, aber auch angeborene Fehlbildungen sind, können lebensbedrohlich sein. Die Gitterstützen aus Metall oder Kunststoff sollen die Luftröhre dehnen und das Zuwachsen der Trachea vermeiden.

Doch beim Einsetzen der Implantate kann es zu Komplikationen kommen: Zum einen besteht die Gefahr, dass die Stents verrutschen und dadurch einen teilweisen oder vollständigen Verschluss der Luftwege verursachen. Zum anderen ist es möglich, dass sich auf den Gitterröhren Bakterien ansiedeln, die beispielsweise eine Lungenentzündung auslösen können. Der Grund: Auf den Stents befinden sich keine barrierebildenden Atemwegszellen, wie sie üblicherweise im Atemwegstrakt vorhanden sind, um Krankheitserreger und inhalierte Stoffe wie Feinstaub abzuwehren. »Die Luftröhre hat eine wichtige Barrierefunktion. Zilien tragende Zellen und Becherzellen reinigen die Atemluft. Daher ist es so wichtig, dass diese Art von Zellen auf den Stents haften können, um so die Reinigungsfunktion des geschädigten Luftröhrenabschnitts aufrecht zu erhalten und gleichzeitig ein Einwachsen der Gitterröhrchen in das umgebende Trachea-Gewebe zu begünstigen«, sagt Dr. Martina Hampel, Wissenschaftlerin am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart.

In Zusammenarbeit mit Prof. Dr. Thorsten Walles, Bereichsleiter der Thoraxchirurgie an der Universitätsklinik Würzburg und Gastwissenschaftler am IGB, haben die Forscherin und ihr Team im Projekt »REGiNA« Oberflächenbeschichtungen entwickelt, die das Einwachsen der Stents in das umgebende Gewebe ermöglichen und so ein Verrutschen der Gitterröhrchen erschweren sollen. »REGiNA«, kurz für Regenerative Medizin in der Gesundheitsregion Neckar-Alb und Stuttgart, wird vom Bundesministerium für Bildung und Forschung BMBF gefördert.

Bioaktive Beschichtungen verringern Patientenrisiko
Für die Beschichtungen verwendeten die Wissenschaftler mit einer Polyurethan-Folie (PU) ausgekleidete Stents von der Leufen Medical GmbH aus Aachen. In den anschließenden Tests wurde die PU-Folie mit unterschiedlichsten Beschichtungen ausgestattet: Neben synthetischen Polymeren aus organischen Säuren setzten die Forscher auf biologische Proteine wie Fibronektin und Kollagen Typ 1. Eine weitere Oberflächenmodifikation erfolgte mithilfe von Plasmatechnik, bei der ein im Vakuum ionisiertes Gas die Oberfläche verändert. Zur Kontrolle nutzten die Experten eine unbehandelte PU-Folie. »Um festzustellen, welche der Beschichtungen sich am besten eignet, haben wir sowohl im Labor gezüchtete Zelllinien als auch menschliche primäre Trachea-Epithelzellen in Zellkulturgefäßen mit den Folien zusammengeführt. Gewünscht war natürlich, dass die primären, direkt aus einem Gewebe gewonnenen Atemwegszellen anwachsen«, erläutert Hampel.

Die besten Ergebnisse erzielten die Forscher mit den proteinbeschichteten Folien. Hier konnten die primären Trachea-Epithelzellen besonders gut anwachsen und sich vermehren. »Die Atemwegszellen erwiesen sich auf den bioaktiven Folien als vitaler als auf den plasmabehandelten. Als völlig unbrauchbar stellten sich hingegen die polymerbeschichteten Folien heraus«, sagt die Wissenschaftlerin.

Die Labortests sind mittlerweile abgeschlossen, die Tierversuche sind in Vorbereitung. Bestätigen sich diese guten Laborergebnisse, so ist in der zum Robert-Bosch-Krankenhaus gehörenden Lungenfachklinik Schillerhöhe in einem weiteren Schritt die klinische Prüfung der modifizierten Stents geplant. »Wir hoffen, dass sich unsere gut verträglichen, zellfreundlichen Oberflächenbeschichtungen in wenigen Jahren auch für andere biomedizinische Prothesen wie Herzschrittmachersonden, Zahn- oder Gelenkimplantate nutzen lassen«, resümiert Hampel.

Dr. rer. nat. Martina Hampel | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/juli/antirutsch-implantateifuer-luftroehren.html

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Hochgezielte Chemotherapie gegen Leberkrebs: Radiologen der Asklepios Klinik Barmbek sind europaweit führend
14.06.2019 | Asklepios Kliniken Hamburg GmbH

nachricht Neue Hochpräzisionsbestrahlung für Krebspatient*innen am Universitätsklinikum Ulm
06.06.2019 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Saubere Lunge dank Laserprozessabsaugung

18.06.2019 | Maschinenbau

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungsnachrichten

Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert

18.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics