Das Ziel der Schaffung einer künstlichen Leber rückt näher. Forscher der University of Pennsylvania und des Massachusetts Institute of Technology (MIT) haben eine Vorlage für Blutgefäße geschaffen, aus der diese mit Hilfe von Zucker hergestellt werden sollen. Wissenschaftler haben seit langem mit dem 3D-Druck von Zellen und Blutgefäßen experimentiert. Dabei wird eine Gewebestruktur Schicht für Schicht aus künstlichen Zellen geschaffen. Diese synthetischen Zellen sterben jedoch oft ab, bevor sich das Gewebe gebildet hat.
Anordnung im Labor: Versorgung des Gewebes wichtig (Foto: Jordan Miller)
Transplantate im Fokus
Das Verfahren, bei dem ein 3D-Drucker Zucker als Baustoff nutzt, könnte eines Tages auch für Transplantate eingesetzt werden. Die Ergebnisse der aktuellen Studie wurden in Nature Materials http://nature.com/nmat veröffentlicht. Laut Jordan Miller, einem Mitarbeiter des leitenden Wissenschaftlers Christopher Chen http://bit.ly/NgWgCa liegt die größte Herausforderung darin, große Mengen künstlichen Gewebes herzustellen und alle Zellen in diesem Gewebe am Leben zu erhalten.
"Wenn eine große Menge an Zellen aufeinandertrifft, rauben sie am Ende den benachbarten Zellen die Nährstoffe und den Sauerstoff, so dass diese Zellen dann absterben." Das Herz-Kreislauf-System des Körpers löst dieses Problem über natürliche Zellen und natürliches Gewebe. Das Team beschloss daher ein künstliches Herz-Kreislauf-System herzustellen, das den gleichen Zweck erfüllt. Sie stellten einen Raum her, in dem sich zukünftige künstliche Blutgefäße ansiedeln sollten.
Blutgefäße entscheidend für Erfolg
Laut MIT-Forscherin Sangeeta Bhatia http://lmrt.mit.edu/about.html funktioniert dieses Verfahren ähnlich wie die Form eines Gefäßes aus Wachs. Es wird von geschmolzenem Material umgeben und das Wachs dann weggeschmolzen. Statt Wachs setzten die Wissenschaftler jedoch Zucker ein. "Bis jetzt ist es schwierig gewesen, Organe herzustellen, die für eine nützliche Funktion groß genug sind", so Bhatia.
Wird Gewebe implantiert, das dicker ist als ein Millimeter, braucht es auch ausreichend Blutgefäße. Die Experten haben dazu ein Netzwerk von Räumen geschaffen, in die die Blutgefäße hineinwachsen sollen, damit sie das Gewebe durchziehen. Ein 3D-Druck aus Zucker soll dabei helfen. Zucker ist laut der Wissenschaftlerin ein geeignetes Material, das auch aus lebendem Gewebe sehr einfach entfernt werden kann.
Ansatz soll bei allen Organen funktionieren
In einem nächsten Schritt haben die Wissenschaftler dieses Netzwerk mit Zellen umgeben, die nach der Implantation von den Blutgefäßen versorgt werden sollen. Ist diese Struktur aus zukünftigen Blutgefäßen und Gewebe hergestellt, wird der Zucker einfach mit Wasser entfernt. Bis jetzt haben die Forscher noch keine Transplantation durchgeführt. Sie wollten nur zeigen, dass die Herstellung von dickerem Gewebe möglich ist.
In Zukunft soll so ein ganzes Organ geschaffen werden. Bhatia betont, dass jetzt nachgewiesen ist, dass mit Hilfe eines 3D-Druckers ein frei wählbares Netzwerk für jede Form von Gewebe oder jede Art von Netzwerk produziert werden kann. In einem nächsten Schritt folgen dann die Zellen, die für das jeweilige Organ erforderlich sind. "Wir haben versucht, eine Leber herzustellen, das gleiche Verfahren kann aber bei jedem anderen Gewebe auch eingesetzt werden."
Michaela Monschein | pressetext.redaktion
Weitere Informationen:
http://www.upenn.edu
http://web.mit.edu
Weitere Berichte zu: > 3D-Druck > 3D-Drucker > Blutgefäß > Gewebe > Gewebestruktur > Herz-Kreislauf-System > Kunst-Leber > Schicht > Zucker
Heilung für beschädigte Knochen aus dem Labor
03.12.2019 | Hochschule Rhein-Waal
Maschinelles Lernen für die Präzisionsmedizin: Schnelltest für die Asthma-Diagnose
02.12.2019 | Fraunhofer-Einrichtung für Marine Biotechnologie und Zelltechnik
Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.
Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...
Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.
Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...
Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...
Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.
Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...
Anzeige
Anzeige
Analyse internationaler Finanzmärkte
10.12.2019 | Veranstaltungen
QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien
04.12.2019 | Veranstaltungen
03.12.2019 | Veranstaltungen
Analyse internationaler Finanzmärkte
10.12.2019 | Veranstaltungsnachrichten
Was Vogelgrippe in menschlichen Zellen behindert
10.12.2019 | Biowissenschaften Chemie
Schäden im Leichtbau erkennen durch Ultraschallsensoren
10.12.2019 | Materialwissenschaften