Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit 20 000 Watt pro Quadratzentimeter gegen den Krebs

15.06.2010
Wissenschaftler der PTB entwickeln Messverfahren zur besseren Planung der Tumortherapie mit Ultraschall

Ob in der Schwangerschaftsvorsorge, zur Diagnose von Gallensteinen oder zur Untersuchung des Herzens: Der Ultraschall gehört zu den Standardverfahren der Medizin. Bisher wird er vor allem zur Diagnose von Krankheiten eingesetzt.

Wenn man aber die Intensität der Ultraschallwellen erhöht und sie auf einen Tumor fokussiert, können sie auch zur Behandlung von Krebs eingesetzt werden und diesen gezielt zerstören. Bevor diese neuartige Therapie genauso breit angewendet werden kann wie der Ultraschall zu Diagnose-Zwecken, muss noch einiges an Forschungsarbeit geleistet werden. Ziel der Forschung ist es, eine bessere Grundlage für die Therapieplanung und -kontrolle zu schaffen. Um die Sicherheit der Behandlung und ihre Effektivität zu erhöhen, sollte zum Beispiel die Leistung des Ultraschalls zuverlässig bestimmt werden können.

Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) haben nun im Rahmen eines europäischen Forschungsprojekts ein etabliertes Messverfahren weiter entwickelt, das die Leistung des hochintensiven Ultraschalls bis 500 Watt bestimmen kann. Ein Ringvergleich mit den europäischen Partnerinstituten wurde erfolgreich abgeschlossen und bewies die korrekte Arbeitsweise des Messverfahrens.

Diese Krebstherapie mittels „High Intensity Therapeutic Ultrasound“ (HITU) ist weitgehend nicht-invasiv, denn sie kommt ohne Schnitte aus. Sie kann gegen Tumore eingesetzt werden, die als inoperabel gelten, weil sie zum Beispiel zu nahe an lebenswichtigen Blutgefäßen, Organen, Nervenbündeln oder Hirnregionen liegen, die bei einer herkömmlichen Operation ebenfalls verletzt werden könnten. HITU wird heute bereits zur Behandlung von Tumoren der Prostata, der Leber und der Gebärmutter eingesetzt. Weitere Anwendungsmöglichkeiten für Mammakarzinome und Hirntumore werden erforscht.

Die Tumortherapie durch Ultraschall funktioniert so ähnlich wie das Entzünden trockener Blätter mit einer Lupe: So wie mit der Lupe die Lichtstrahlen auf die Blätter gebündelt werden, werden die Ultraschallfelder durch einen gekrümmten Ultraschallwandler auf den Tumor fokussiert. In beiden Fällen entsteht im Fokus eine hohe Temperatur, die die trockenen Blätter entzündet oder die Krebszellen auf weit über 65 °C erhitzt. Dadurch werden die Tumorzellen abgetötet und anschließend vom Körper abgebaut. Wichtig ist, dass die hohen Temperaturen nur in der Fokusregion der Ultraschallwellen erreicht werden. So kann das Tumorgewebe gezielt zerstört werden, während das umliegende gesunde Gewebe unverletzt bleibt.

Das Ziel der PTB-Wissenschaftler war, die Ausgangsleistung eines HITU-Wandlers bis 500 Watt zu bestimmen. Dieses Gerät erzeugt den hochintensiven Ultraschall. Dazu benutzten sie ein Verfahren, das normalerweise für die Leistungsmessung des schwächeren, diagnostischen Ultraschalls verwendet wird. Da die Leistung des therapeutischen Ultraschalls bis zu 5000 mal größer sein kann als die des diagnostischen, musste das Verfahren zuerst an die Leistung des hochintensiven therapeutischen Ultraschalls angepasst werden. Die Messungen zeigen, dass ein linearer Zusammenhang zwischen der in den HITU-Wandler eingespeisten elektrischen Leistung und der akustischen Ausgangsleistung des Geräts besteht.

Nach der Erprobung des Verfahrens wurde nun ein Ringvergleich mit europäischen Partnerinstituten erfolgreich abgeschlossen. Er zeigt, dass das entwickelte Messverfahren zuverlässig funktioniert und zur Messung von Schallfeldern ebenso eingesetzt werden kann wie zur Zertifizierung der Ultraschallgeräte. Die an dem europäischen Forschungsprojekt beteiligten Wissenschaftler entwickeln darüber hinaus Verfahren, mit denen die Verteilung von Schalldruck und -intensitäten in einem HITU-Feld und die Temperaturverteilung in der Fokuszone bestimmt werden können, und entwerfen Kalibrierphantome für die Magnetresonanz-Thermometrie. Ziel ist es, zuverlässige Modellrechnungen für die Therapieplanung und -kontrolle zu schaffen.

Ansprechpartner
Klaus-Vitold Jenderka, PTB-Arbeitsgruppe 1.62 Ultraschall,
Tel.: (0531) 592 1432, E-Mail: klaus-vitold.jenderka@ptb.de

Imke Frischmuth | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht MR-kompatibles Ultraschallsystem für die therapeutische Anwendung von Ultraschall
18.10.2019 | Fraunhofer-Institut für Biomedizinische Technik IBMT

nachricht Bessere Rheuma-Früherkennung dank neuer Fußkamera
15.10.2019 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungsnachrichten

Studenten entwickeln einen Koffer, der automatisch auf Schritt und Tritt folgt

22.10.2019 | Innovative Produkte

Chemikern der Universität Münster gelingt Herstellung neuartiger Lewis-Supersäuren auf Phosphor-Basis

22.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics