Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Woher wir wissen, wo wir sind: Bochumer und Bonner Studie mit Epilepsiepatienten

16.02.2015

EEG im Gehirn entlarvt die Signatur bestimmter Orte

Zu wissen, wo wir sind, und uns an zurückgelegte Wege zu erinnern, sind zentrale Fähigkeiten für das tägliche Leben. Um den Mechanismen der räumlichen Navigation im Gehirn auf die Spur zu kommen, haben RUB-Forscher um Prof. Dr. Nikolai Axmacher gemeinsam mit Kollegen aus Bonn die entsprechenden Vorgänge anhand eines direkt im Gehirn abgeleiteten Enzephalogramms (EEG) untersucht. So konnten sie die neuronale Signatur während des Lernens und Abrufs bestimmter Orte identifizieren. Sie berichten in der aktuellen Ausgabe von Current Biology.


Weg durch ein virtuelles Haus mit fünf Räumen: Während Lernen und Abruf einer bestimmten Szene sieht man ähnliche Aktivitätsmuster.

RUB, AG Axmacher

Verteilte und lokale Aktivitätsmuster bei der räumlichen Navigation

Woher wissen wir, wo wir gerade sind? Wie erinnern wir uns an früher zurückgelegte Wege? Die Fähigkeit zur räumlichen Navigation ist seit längerem Gegenstand der Psychologie und der Hirnforschung. „Dabei gibt es vermutlich nicht nur einen einzigen Mechanismus der räumlichen Navigation; stattdessen verwendet das Gehirn unterschiedliche ‚Codes‘, um Orte abzuspeichern“, sagt Nikolai Axmacher. In ihrer aktuellen Studie haben die RUB-Wissenschaftler und Kollegen der Klinik für Epileptologie in Bonn verteilte und lokale Aktivitätsmuster während der räumlichen Navigation untersucht.

Wege im virtuellen Haus einprägen

An der Studie nahmen zehn Epilepsiepatienten teil, denen im Rahmen einer Operationsabklärung EEG-Elektroden direkt in das Gehirn implantiert worden waren. Während das EEG bei diesen Patienten abgeleitet wurde, wurden sie gebeten, sich Wege in einem virtuellen Haus einzuprägen und sich anschließend an diese Wege zu erinnern. Tatsächlich gelang es auf diese Weise, die neuronale Signatur beim Lernen und Abruf spezifischer Orte zu identifizieren.

„Verteilte und lokale Aktivitätsmuster schienen zusammen zu hängen: Diejenigen Hirnregionen, die an verteilten Ortsrepräsentationen beteiligt waren, enthielten auch für sich alleine recht präzise Information über bestimmte Orte“, erklärt Nikolai Axmacher. „Die Genauigkeit von Ortsrepräsentationen war dabei recht variabel; interessanterweise traten besonders präzise Repräsentationen immer dann auf, wenn die Gesamtaktivität des Gehirns in einem schnellen Frequenzbereich vergleichsweise gering war.“

Diese Ergebnisse weisen darauf hin, dass räumliche Navigation besonders dann gut gelingt, wenn andere, irrelevante Aktivität unterdrückt werden kann. „Wie wichtig die Frage nach der neuronalen Basis der räumlichen Navigation ist, wurde übrigens letztes Jahr deutlich“, so der Forscher: „Alle drei Nobelpreise in Medizin wurden an Wissenschaftler vergeben, die zu dieser Fragestellung gearbeitet haben.“

Titelaufnahme

Zhang et al.: Gamma power reductions accompany stimulus-specific representations of dynamic events. Current Biology (2015) http://dx.doi.org/10.1016/j.cub.2015.01.011

Weitere Informationen

Prof. Dr. Nikolai Axmacher, Kognitive Neurowissenschaft, Fakultät für Psychologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-22674, E-Mail: nikolai.axmacher@rub.de, http://www.ruhr-uni-bochum.de/neuropsy/

Meike Drießen | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Ist Salz besser als sein Ruf?
10.08.2018 | Universitätsspital Bern

nachricht Neue Antigene für Typ-1-Diabetes bestätigt
09.08.2018 | Institut für Diabetesforschung, Helmholtz Zentrum München

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgesteuerte Moleküle: Forscher öffnen neue Wege im Recycling

14.08.2018 | Biowissenschaften Chemie

Sicherheitslücken im Internetprotokoll „IPsec“ identifiziert

14.08.2018 | Informationstechnologie

Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All

14.08.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics