Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie breitet sich das SARS-CoV-2-Virus in der Raumluft aus?

18.05.2020

Ansteckungsgefahr liegt in der Luft

Wissenschaftler*innen der TU Berlin analysieren, wie sich SARS-CoV-2 in der Raumluft ausbreitet

Wie genau das Corona-Virus verbreitet wird – ob vor allem über eine Tröpfcheninfektion oder doch eher über Aerosole in der Atemluft ist noch nicht abschließend geklärt.


Die Ausbreitung des Atems und der darin enthaltenen Aerosole, die potenziell Viren tragen könnten, wird in den Laboren des Hermann-Rietschel-Instituts an der TU Berlin untersucht.

© Hermann-Rietschel-Institut, TU Berlin

Wenn ein*e Corona-Patient*in hustet, spricht oder niest, wird ein Strahl an unterschiedlich großen Tröpfchen und Aerosolen erzeugt, der in die Raumluft eindringt und sich dort ausbreitet. Alle diese unterschiedlich großen Tröpfchen und Aerosole enthalten potenziell Viren.

Wie diese Partikel sich verhalten, ob und wann sie zu Boden sinken, wie weit sie sich verteilen, in der Luft stehen bleiben oder wo sie sedimentieren, ist ein Forschungsthema von Prof. Dr. Martin Kriegel, Leiter des Hermann-Rietschel-Instituts an der TU Berlin.

„Wir untersuchen in verschiedenen Projekten die Verweilzeit von Erregern in der Luft unter den verschiedensten Bedingungen“, so Martin Kriegel. Für diese Experimente stehen seinem Team „Contamination Control“ zwei Forschungsreinräume, mehrere Raumluftströmungslabore sowie ein Forschungsoperationsaal zur Verfügung.

Im Zusammenhang mit der Corona-Pandemie untersuchen die Wissenschaftler*innen, inwiefern die Ausbreitung des Virus von der Zusammensetzung und Größenverteilung der Partikel innerhalb der ausgeatmeten Luft (Aerosol) abhängt.

Bei einem Aerosol handelt es sich um kleinste, flüssige oder feste Partikel (das können zum Beispiel Viren sein, einzeln oder im Verbund mit Speichelflüssigkeit oder auch Ruß, Feinstaub etc.) in einem Gas, üblicherweise Luft.

Die Partikelgröße reicht dabei von wenigen Nanometern – also einem Millionstel Millimeter – bis mehreren Mikrometern. Zum Vergleich: Ein menschliches Haar hat eine Dicke von etwa 100 Mikrometern.

„Für das Corona-Virus scheint sich herauszustellen, dass sowohl Tröpfcheninfektionen als auch die luftgetragene Übertragung, also über Aerosole, relevant sind“, so Martin Kriegel. Bei einer Tröpfcheninfektion gelangen die Viruspartikel in einem Speicheltröpfchen direkt auf die Schleimhäute eines anderen Menschen.

Bei einer luftgetragenen Übertragung gelangen die Viren – gebunden in kleinsten flüssigen Partikeln – in die Atemwege. Für das Verhalten von Viren in der Luft ist die Größe der Träger-Aerosole entscheidend, aber ebenso das Raumklima, die Luftwechselrate und die Art und Weise, wie gelüftet wird. „Größere Partikel sinken schneller zu Boden. Kleinere Partikel folgen dem Luftstrom und können lange in der Luft verbleiben“, weiß Martin Kriegel.

Die Ausbreitung im Raum der Mischung aus Partikeln, Speichel und Luft, die beim Sprechen, Husten und Niesen entsteht, erfolgt in zwei Schritten. Zunächst wird durch das Husten/Sprechen/Niesen ein Strahl erzeugt, der in die Raumluft eindringt und sich zunehmend mit dieser vermischt.

Der Verlauf des eintretenden Strahls ist dabei abhängig von verschiedenen Randbedingungen wie der Geschwindigkeit, der Turbulenz, der Temperaturdifferenz zwischen dem Strahl und der Umgebungsluft sowie der Differenz der Luftfeuchtigkeit. Aus verschiedenen Studien ist bekannt, dass beim Sprechen/Husten/Niesen Partikel von 0,01 μm bis 1500 μm auftreten.

„Nach vollständiger Vermischung des Strahls mit der Raumluft erfolgt die Verteilung“, erklärt Martin Kriegel. „Die kleineren Partikel folgen weitgehend der Raumluftströmung, während größere Partikel sukzessive zu Boden fallen. Häufig unbeachtet wird die Tatsache, dass der Mensch nur beim Niesen sehr große Partikel emittiert. Beim normalen Sprechen und Husten werden fast ausschließlich kleine Aerosole generiert.“

In verschiedenen Projekten haben die Wissenschaftler*innen die sogenannte Sedimentationszeit (Ablagerungszeit) von Partikeln verschiedener Größenklassen gemessen. Kleine Partikel (0,5 bis 3 μm) sind nach einer Messzeit von 20 Minuten noch nahezu vollständig in der Luft vorhanden. Eine Ablagerung dieser Partikel ist nicht oder nur geringfügig erkennbar.

Für mittlere Partikel (3 bis 10 μm) sind nach einer Messzeit von 20 Minuten noch mehr als 50 Prozent in der Luft zu finden. „Eine weitere Studie zeigt, dass sich selbst größere Tröpfchen (>60 μm) unter bestimmten Umständen weit im Raum ausbreiten können.

Dies ist zum Beispiel der Fall, wenn die Partikel im Auftriebsstrom von Wärmequellen (zum Beispiel von einer Person) emittiert werden. Sie steigen auf, verteilen sich horizontal und fangen erst dann an, sich abzulagern. Eventuelle horizontale Luftbewegungen verstärken den Verbreitungseffekt noch“, so Martin Kriegel.

Im Zusammenhang mit der Wiederaufnahme eines Berufsalltags in einem mit mehreren Personen besetzten Büro haben die Wissenschaftler*innen auch die Partikelausbreitung in einem mit vier Personen besetzten Büro mit und ohne maschineller Lüftung simuliert. „Dabei zeigt sich, dass gerade kleinere Partikel unter 50 μm sich ohne eine maschinelle Lüftung weit im Raum verbreiten und lange verweilen. Im Gegensatz dazu breiten sich Partikel zwischen 5 und 20 μm in einem Raum mit maschineller Lüftung weniger weit aus und werden zu einem Großteil abgeführt“, summiert Martin Kriegel.

„Die entscheidenden Fragen, die wir jetzt in interdisziplinären Projekten untersuchen werden, sind, wie groß SARS-CoV-2-Partikel sein müssen, um noch infektiös zu sein und wie die Verweildauer dieser Partikelgröße durch gezielte Zu- und Abluftanlagen oder auch einfaches Belüften von Räumen beeinflusst werden kann.

Dabei spielt auch das Raumklima eine Rolle, denn die Aerosole werden durch Verdunstung sehr schnell kleiner und verhalten sich dann anders. Ganz grundsätzlich kann man festhalten, dass bei typischen Luftwechselraten in Wohn- und Bürogebäuden die Erreger über Stunden im Raum verbleiben. Die Sinkgeschwindigkeit und auch die Lufterneuerung dauern sehr lange. Jede Erhöhung der Außenluftzufuhr ist daher generell sinnvoll.“

Mehr Informationen: https://blogs.tu-berlin.de/hri_sars-cov-2/

Fotomaterial zum Download
http://www.tu-berlin.de/?214533

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Martin Kriegel
TU Berlin
Fachgebiet Gebäude-Energie-Systeme
Tel.: 030 314-24176
E-Mail: m.kriegel@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.tu-berlin.de/?214533

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Nierenwerte als Seismograf für den Verlauf einer COVID-19-Erkrankung
14.05.2020 | Deutsche Gesellschaft für Nephrologie e.V. (DGfN)

nachricht Protein-Schredder reguliert Fettstoffwechsel im Gehirn
11.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Proteine gemeinsam agieren, aber alleine reisen

Proteine, die mikroskopisch kleinen "Arbeitspferde", die alle lebenswichtigen Funktionen erfüllen, sind Teamplayer: Um ihre Aufgabe zu meistern, müssen sie sich oft zu präzisen Strukturen, so genannten Proteinkomplexen, zusammenfügen. Diese Komplexe können jedoch dynamisch und kurzlebig sein, wobei Proteine zusammenkommen, sich aber bald darauf wieder trennen.

In einer neuen Arbeit, die in PNAS veröffentlicht wurde, zeigen Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation, der Universität Oxford...

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

Im Focus: 'Hot and messy' entanglement of 15 trillion atoms

Quantum entanglement is a process by which microscopic objects like electrons or atoms lose their individuality to become better coordinated with each other. Entanglement is at the heart of quantum technologies that promise large advances in computing, communications and sensing, for example detecting gravitational waves.

Entangled states are famously fragile: in most cases even a tiny disturbance will undo the entanglement. For this reason, current quantum technologies take...

Im Focus: A new, highly sensitive chemical sensor uses protein nanowires

UMass Amherst team introduces high-performing 'green' electronic sensor

Writing in the journal NanoResearch, a team at the University of Massachusetts Amherst reports this week that they have developed bioelectronic ammonia gas...

Im Focus: Surgery Training with Robots and Virtual Reality

Joint press release from the University of Bremen and Chemnitz University of Technology

The insertion of hip implants places high demands on surgeons. To help young doctors practice this operation under realistic conditions, scientists from the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

Erfolgreiche Premiere für das »Electrochemical Cell Concepts Colloquium«

18.05.2020 | Veranstaltungen

Live-Stream: Colloquium Fundamentale zur Bioökonomie

29.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wenn Proteine gemeinsam agieren, aber alleine reisen

18.05.2020 | Biowissenschaften Chemie

Weniger Schnee in 78 Prozent der Berggebiete weltweit

18.05.2020 | Studien Analysen

Energiewende mit Wasserstoff

18.05.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics