Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtige Signale für die gezielte Entwicklung und Regeneration von Betazellen identifiziert

04.05.2012
Eine internationale Kooperation von Wissenschaftlern zeigt in ihrer heute beim renommierten Fachjournal Proceedings of the National Academy of Sciences (PNAS) veröffentlichten Studie, dass der Notch-Signalweg für die Bildung von Insulin-produzierenden Betazellen essentiell ist. Daraus ergeben sich neue Ansatzpunkte für die Betazell-Ersatztherapie und die Regeneration der Langerhans’schen Inseln bei der Volkskrankheit Diabetes mellitus.

Wissenschaftler zeigen in der aktuellen Ausgabe des renommierten Fachjournals PNAS (Proceedings of the National Academy of Sciences), dass Mindbomb1, ein Regulator für den Notch-Signalweg*, entscheidend ist für die physiologisch korrekte Entwicklung der Betazellen während der Embryonalentwicklung.

Damit geht die Bedeutung des Notch-Signalweges über die reine Aufrechterhaltung der Vorläuferzellen deutlich hinaus. Die Befunde sind essentiell, in vitro Differenzierung von Betazellen aus ihren Vorläufern zu ermöglichen und so zukünftig Zellersatztherapien bei Diabetikern zu entwickeln oder die Neubildung von Betazellen beim Erwachsenen wieder anzuregen.

Die Arbeiten entstanden in Kooperation des Dänischen Stammzellzentrums mit NovoNordisk, außerdem waren die amerikanische Vanderbilt-Universität, die japanische Universität Kyoto, die koreanische Universität in Seoul und das Helmholtz Zentrum München beteiligt.

Prof. Heiko Lickert, Direktor des Instituts für Diabetes- und Regenerationsforschung des Helmholtz Zentrums München, leistete mit seinem Team einen erfolgskritischen Beitrag: Hier gelang es, eine Mauslinie zu generieren, bei der bedarfsabhängig der Notch-Signalweg im Pankreas ausgeschaltet werden kann. Durch das gezielte Ab- und Anschalten von Genen während der Organentwicklung können die Wissenschaftler detailliert untersuchen, welche Signale und Faktoren die Entwicklung der Betazelle regulieren. Dadurch wird das Modell auch über die aktuelle Studie hinaus dazu beitragen, konkrete medizinische Fortschritte im Bereich der regenerativen Medizin zu erzielen: „Unsere Erkenntnisse sind ein wichtiger Schritt, um die Entstehung neuer Betazellen anregen zu können und damit auf lange Sicht Zell-Ersatztherapien und die Wiederherstellung der Betazellen bei Diabetikern zu ermöglichen“, sagt Lickert.

Das Verständnis der Entstehungsmechanismen von Volkskrankheiten und die Ableitung neuer Angriffspunkte für Diagnose, Therapie und Prävention ist Ziel des Helmholtz Zentrums München.

Typ-2-Diabetes ist eine Erkrankung des Glukosestoffwechsels, bei der die Betazellen der Bauchspeicheldrüse entweder absterben, nicht mehr ausreichend Insulin produzieren oder das Insulin im Körper nicht mehr wirken kann. Diabetiker mit unzureichender Insulin-Produktion werden durch medikamentöse Gabe des Hormons behandelt. Allein in Deutschland ist Diabetes derzeit bei mindestens sieben Prozent der Bevölkerung bekannt, das entspricht fast sechs Millionen Menschen. Studien zur Dunkelziffer des Diabetes legen nahe, dass darüber hinaus mehrere Millionen Männer und Frauen in Deutschland an einem noch nicht diagnostizierten Diabetes leiden.

Weitere Informationen

Hintergrund
* Der Notch-Signalweg steuert wichtige Vorgänge in der Embryonalentwicklung von Säugetieren und dem Menschen. Unter anderem ist er beteiligt an der Bildung der pankreatischen Betazelle.
Original-Publikation:
Horn S. et al.(2012) Mind bomb 1 is required for pancreatic β-cell formation, PNAS April 23, 2012, doi: 10.1073/pnas.1203605109
Link zur Fachpublikation http://www.pnas.org/content/early/2012/04/18/1203605109.abstract

Das Helmholtz Zentrum München verfolgt als deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 1.900 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 31.000 Beschäftigten angehören. Das Helmholtz Zentrum München ist Partner im Deutschen Zentrum für Diabetesforschung e.V.. http://www.helmholtz-muenchen.de
Ansprechpartner für die Medien:
Sven Winkler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3946 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de
Fachlicher Ansprechpartner:
Prof. Dr. Heiko Lickert, Institut für Diabetes- und Regenerationsforschung, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3760 - Fax: 089-3187-3761 - E-Mail: heiko.lickert@helmholtz-muenchen.de

Susanne Eichacker | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-muenchen.de/
http://www.pnas.org/content/early/2012/04/18/1203605109.abstract

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics