Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Magnetfelder im Gehirn verändern – und wie man das erforschen kann

30.01.2018

Tübinger Neurowissenschaftler ermöglichen tiefe Einblicke in die Funktionsweise der Transkraniellen Magnetstimulation (TMS)

Tübinger Neurowissenschaftler haben eine Methode entwickelt, mit der sich die Gehirnaktivität während einer transkraniellen Magnetstimulation (TMS) messen lässt. Obwohl die TMS seit 30 Jahren erforscht wird, ist bisher wenig über ihre Wirkungsweise bekannt.


Ein besseres Verständnis könnte dazu beitragen, die TMS als nicht-invasive und schmerzfreie Diagnose- und Behandlungsmethode weiter zu entwickeln. Die Studie wurde kürzlich im Fachmagazin eLife veröffentlicht.

Es klingt wie Science Fiction: Die Gehirnaktivität eines Menschen lässt sich ohne Berührung verändern, indem man eine Drahtspule über den Kopf hält ‒ und dadurch bewegen sich beispielsweise Arme oder Beine.

Diese Technik, die transkranielle Magnetstimulation, wird in der Forschung und zur Behandlung vieler Hirnerkrankungen verwendet. Die TMS sendet ein starkes gepulstes Magnetfeld aus, das winzige elektrische Ströme im Hirngewebe darunter erzeugt. Diese können Neuronen (Nervenzellen im Gehirn) aktivieren.

In der Medizin wird TMS bei Störungen motorischer Funktionen (z.B. bei Multipler Sklerose oder nach einem Schlaganfall) diagnostisch eingesetzt. Therapeutisch kommt sie beispielsweise bei Tinnitus, bei Depressionen, bei Schmerz- und neuerdings auch Suchtpatienten zum Einsatz. In Europa ist die TMS allerdings noch keine etablierte Behandlungsmethode.

Denn was mit den Neuronen genau passiert, wenn das Magnetfeld eingeschaltet wird, verstehen Forscher bis heute nicht wirklich: Die elektrische Aktivität einzelner Neurone im Gehirn misst man mit Mikroelektroden. Diese werden jedoch durch die starken Magnetfelder der TMS massiv gestört und die abgeleiteten Signale der Nervenzellen maskiert.

Forscher mehrerer Arbeitsgruppen (Cornelius Schwarz, Martin Giese, Ulf Ziemann, Axel Oeltermann) aus drei Tübinger Instituten (Werner Reichardt Centrum für Integrative Neurowissenschaften der Universität Tübingen, Hertie-Institut für klinische Hirnforschung und Max-Planck-Institut für Biologische Kybernetik) haben nun gemeinsam eine Abschirmung der Mikroelektroden gegen die starken Magnetfelder der TMS entwickelt. So können sie die Veränderungen in einzelnen Hirnzellen mit nur einer Millisekunde Verzögerung nach dem Magnetimpuls messen.

Die Forscher bewiesen in ihrer Studie, dass ihre Abschirmungstechnik verwendbare Daten liefert. Dazu stimulierten sie mit TMS die Region im Motorkortex von Ratten, die die Vordergliedmaßen steuert. Während die Tiere durch die Stimulation ihre Vorderpfoten bewegten, maßen die Forscher die Aktivität der Neuronen. Zum ersten Mal konnten sie so direkt beobachten, wie die für die Vordergliedmaßen verantwortlichen Kortexneuronen auf TMS reagierten.

Sie stellten fest, dass die neuronale Aktivität auch nach Ende des TMS-Pulses anhielt. Außerdem änderte sich die neuronale Aktivität abhängig von der Richtung des Stromflusses, den die TMS im Hirngewebe erzeugte. Diese Ergebnisse passen verblüffend genau zu Beobachtungen in der klinischen Forschung beim Menschen, bei denen Neuronenaktivität statt im Gehirn im Rückenmark und in den Muskeln aufgezeichnet wurde.

„Nur zwei Arbeitsgruppen weltweit haben Ähnliches vor uns geschafft“, sagt Dr. Alia Benali, die die Studie geplant und durchgeführt hat. Die Methoden dieser Vorgängerstudien sind technisch äußerst anspruchsvoll; außerdem sind sie spezifisch für Primatengehirne entwickelt: Einschränkungen, die für viele Laboratorien ein Hindernis darstellen. „Uns ging es darum, eine einfache Methode zur Untersuchung neuronaler Aktivität bei TMS zu entwickeln. Sie soll für jedes Labor ohne spezielles Know-how zugänglich sein“, erklärt Doktorand Bingshuo Li.

Publikation:
Bingshuo Li, Juha P. Virtanen, Axel Oeltermann, Cornelius Schwarz, Martin A. Giese, Ulf Ziemann, Alia Benali: Lifting the Veil on the Dynamics of Neuronal Activities Evoked by Transcranial Magnetic Stimulation. eLife 2017;6:e30552; DOI: 10.775/eLife.30552

Autorenkontakt:
Dr. Alia Benali
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN)
Otfried-Müller-Str. 25
D-72076 Tübingen
Tel.: +49 7071 29-89033
alia.benali@uni-tuebingen.de

Pressekontakt CIN:
Dr. Paul Töbelmann
Universität Tübingen
Wissenschaftskommunikation
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
Otfried-Müller-Str. 25 ∙ 72076 Tübingen
Tel.: +49 7071 29-89108
paul.toebelmann@cin.uni-tuebingen.de

www.cin.uni-tuebingen.de

Pressekontakt HIH:
Dr. Mareike Kardinal
Leitung Kommunikation
Hertie-Institut für klinische Hirnforschung
Otfried-Müller-Str. 27
72076 Tübingen
Tel.: +49 7071 29-88800
mareike.kardinal@medizin.uni-tuebingen.de

www.hih-tuebingen.de

Antje Karbe | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Die Schurken der Schuppenflechte
20.11.2018 | Medizinische Hochschule Hannover

nachricht Mit körpereigenem Protein Herpes bekämpfen
13.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics