Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Magnetfelder im Gehirn verändern – und wie man das erforschen kann

30.01.2018

Tübinger Neurowissenschaftler ermöglichen tiefe Einblicke in die Funktionsweise der Transkraniellen Magnetstimulation (TMS)

Tübinger Neurowissenschaftler haben eine Methode entwickelt, mit der sich die Gehirnaktivität während einer transkraniellen Magnetstimulation (TMS) messen lässt. Obwohl die TMS seit 30 Jahren erforscht wird, ist bisher wenig über ihre Wirkungsweise bekannt.


Ein besseres Verständnis könnte dazu beitragen, die TMS als nicht-invasive und schmerzfreie Diagnose- und Behandlungsmethode weiter zu entwickeln. Die Studie wurde kürzlich im Fachmagazin eLife veröffentlicht.

Es klingt wie Science Fiction: Die Gehirnaktivität eines Menschen lässt sich ohne Berührung verändern, indem man eine Drahtspule über den Kopf hält ‒ und dadurch bewegen sich beispielsweise Arme oder Beine.

Diese Technik, die transkranielle Magnetstimulation, wird in der Forschung und zur Behandlung vieler Hirnerkrankungen verwendet. Die TMS sendet ein starkes gepulstes Magnetfeld aus, das winzige elektrische Ströme im Hirngewebe darunter erzeugt. Diese können Neuronen (Nervenzellen im Gehirn) aktivieren.

In der Medizin wird TMS bei Störungen motorischer Funktionen (z.B. bei Multipler Sklerose oder nach einem Schlaganfall) diagnostisch eingesetzt. Therapeutisch kommt sie beispielsweise bei Tinnitus, bei Depressionen, bei Schmerz- und neuerdings auch Suchtpatienten zum Einsatz. In Europa ist die TMS allerdings noch keine etablierte Behandlungsmethode.

Denn was mit den Neuronen genau passiert, wenn das Magnetfeld eingeschaltet wird, verstehen Forscher bis heute nicht wirklich: Die elektrische Aktivität einzelner Neurone im Gehirn misst man mit Mikroelektroden. Diese werden jedoch durch die starken Magnetfelder der TMS massiv gestört und die abgeleiteten Signale der Nervenzellen maskiert.

Forscher mehrerer Arbeitsgruppen (Cornelius Schwarz, Martin Giese, Ulf Ziemann, Axel Oeltermann) aus drei Tübinger Instituten (Werner Reichardt Centrum für Integrative Neurowissenschaften der Universität Tübingen, Hertie-Institut für klinische Hirnforschung und Max-Planck-Institut für Biologische Kybernetik) haben nun gemeinsam eine Abschirmung der Mikroelektroden gegen die starken Magnetfelder der TMS entwickelt. So können sie die Veränderungen in einzelnen Hirnzellen mit nur einer Millisekunde Verzögerung nach dem Magnetimpuls messen.

Die Forscher bewiesen in ihrer Studie, dass ihre Abschirmungstechnik verwendbare Daten liefert. Dazu stimulierten sie mit TMS die Region im Motorkortex von Ratten, die die Vordergliedmaßen steuert. Während die Tiere durch die Stimulation ihre Vorderpfoten bewegten, maßen die Forscher die Aktivität der Neuronen. Zum ersten Mal konnten sie so direkt beobachten, wie die für die Vordergliedmaßen verantwortlichen Kortexneuronen auf TMS reagierten.

Sie stellten fest, dass die neuronale Aktivität auch nach Ende des TMS-Pulses anhielt. Außerdem änderte sich die neuronale Aktivität abhängig von der Richtung des Stromflusses, den die TMS im Hirngewebe erzeugte. Diese Ergebnisse passen verblüffend genau zu Beobachtungen in der klinischen Forschung beim Menschen, bei denen Neuronenaktivität statt im Gehirn im Rückenmark und in den Muskeln aufgezeichnet wurde.

„Nur zwei Arbeitsgruppen weltweit haben Ähnliches vor uns geschafft“, sagt Dr. Alia Benali, die die Studie geplant und durchgeführt hat. Die Methoden dieser Vorgängerstudien sind technisch äußerst anspruchsvoll; außerdem sind sie spezifisch für Primatengehirne entwickelt: Einschränkungen, die für viele Laboratorien ein Hindernis darstellen. „Uns ging es darum, eine einfache Methode zur Untersuchung neuronaler Aktivität bei TMS zu entwickeln. Sie soll für jedes Labor ohne spezielles Know-how zugänglich sein“, erklärt Doktorand Bingshuo Li.

Publikation:
Bingshuo Li, Juha P. Virtanen, Axel Oeltermann, Cornelius Schwarz, Martin A. Giese, Ulf Ziemann, Alia Benali: Lifting the Veil on the Dynamics of Neuronal Activities Evoked by Transcranial Magnetic Stimulation. eLife 2017;6:e30552; DOI: 10.775/eLife.30552

Autorenkontakt:
Dr. Alia Benali
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN)
Otfried-Müller-Str. 25
D-72076 Tübingen
Tel.: +49 7071 29-89033
alia.benali@uni-tuebingen.de

Pressekontakt CIN:
Dr. Paul Töbelmann
Universität Tübingen
Wissenschaftskommunikation
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
Otfried-Müller-Str. 25 ∙ 72076 Tübingen
Tel.: +49 7071 29-89108
paul.toebelmann@cin.uni-tuebingen.de

www.cin.uni-tuebingen.de

Pressekontakt HIH:
Dr. Mareike Kardinal
Leitung Kommunikation
Hertie-Institut für klinische Hirnforschung
Otfried-Müller-Str. 27
72076 Tübingen
Tel.: +49 7071 29-88800
mareike.kardinal@medizin.uni-tuebingen.de

www.hih-tuebingen.de

Antje Karbe | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Gangmessdaten visualisieren und analysieren
16.07.2018 | Fachhochschule St. Pölten

nachricht „Small meets smaller“ – Nanopartikel beeinflussen Schimmelpilzinfektion der Atemwege
05.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics