Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum wir auch in Bewegung eine stabile Welt sehen

09.03.2018

Tübinger Neurowissenschaftler erforschen das Zusammenspiel von visueller Wahrnehmung und Kopfbewegungen mittels funktioneller Magnetresonanztomographie

Mit jeder Kopfbewegung verändert sich das Abbild unserer Umgebung, das die Augen erreicht. Damit wir unsere Umwelt dennoch als stabil wahrnehmen, muss das Gehirn diese visuelle Information mit der Bewegung des Kopfes verrechnen.


Der Kopf des Probanden wird im fMRT-Scanner mit computerkontrollierten Luftkissen stabilisiert. So sind Aufnahmen bei Kopfbewegungen möglich. LEDs dienen als Referenzpunkte für die Kopfbewegung.

Abbildung: CIN, Universität Tübingen

Zwei Neurowissenschaftlern vom Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) der Universität Tübingen ist es nun erstmals gelungen, per funktioneller Magnetresonanztomographie (fMRT) zu beobachten, was im Gehirn bei dieser Verrechnung geschieht. Ihre Ergebnisse tragen dazu bei, zu verstehen, wie sich Virtual-Reality-Anwendungen auf das Gehirn auswirken; sie wurden nun im Fachmagazin NeuroImage veröffentlicht.

Unsere Umwelt erscheint uns auch dann stabil, wenn wir uns in ihr bewegen. Das liegt daran, dass unser Gehirn einen ständigen Abgleich der Sinne vornimmt: So werden visuelle Reize mit dem Gleichgewichtssinn, der relativen Stellung von Kopf zu Körper oder der Rückmeldung von ausgeführten Bewegungen in Einklang gebracht. Die Folge: Auch wenn wir gehen oder rennen, schwankt unsere Wahrnehmung der Welt nicht. Anders ist das aber, wenn visuelle Reize und die Wahrnehmung der eigenen Bewegung nicht zusammenpassen.

Diese Erfahrung hat vielleicht schon gemacht, wer einmal mit einer Virtual-Reality-Brille in fremde Welten eingetaucht ist. VR-Brillen erfassen zwar kontinuierlich die Kopfbewegung des Trägers, und der Computer passt die visuelle Darbietung entsprechend an. Dennoch führt längeres Tragen der Brillen bei vielen Anwendern zu Übelkeit: Selbst moderne VR-Systeme haben derzeit noch Probleme, visuelle Information und Kopfbewegung mit der nötigen Präzision in Einklang zu bringen.

Bisher versteht die Neurowissenschaft die Mechanismen, die im Gehirn visuelle Wahrnehmung und Bewegung harmonisieren, allerdings noch nicht wirklich. Insbesondere nicht-invasive Bildgebungsstudien am Menschen, etwa durch funktionelle Magnetresonanztomographie (fMRT), haben das Problem, dass Bilder nur vom ruhenden Kopf aufgenommen werden können.

Mit einer ausgeklügelten Apparatur ist den Tübinger Neurowissenschaftlern Andreas Schindler und Andreas Bartels nun dennoch das Kunststück gelungen, per fMRT zu beobachten, was im Gehirn geschieht, während wir den Kopf bewegen und dabei zusammenpassende bzw. sich widersprechende Bewegungs- und visuelle Reize wahrnehmen. Dazu setzten sie ihren Probanden eine VR-Brille auf und legten sie in einen modifizierten fMRT-Scanner.

Computergesteuerte Luftkissen sorgten dafür, dass der Kopf der Probanden nach einer Bewegung blitzschnell fixiert wurde. Während der Kopfbewegung wurden die auf die VR-Brille projizierten Bilder entweder an die Bewegung angepasst, so dass der Eindruck einer stabilen virtuellen Umwelt entstand. Oder die VR-Brille zeigte Bilder, die mit der Kopfbewegung in Konflikt standen. Sobald die Luftkissen den Kopf wieder stabilisiert hatten, wurde das fMRT-Signal aufgezeichnet.

Andreas Schindler erklärt die Vorgehensweise so: „Beim Signal, das man mit fMRT misst, handelt es sich nicht um Aktionspotenziale an Neuronen. Vielmehr macht fMRT den Blutfluss und Sauerstoffverbrauch im Gehirn sichtbar, und zwar mit einer Verzögerung von einigen Sekunden. Eigentlich gilt das oft als Nachteil der fMRT. Aber den Moment, in dem das Gehirn der Probanden damit beschäftigt war, Kopfbewegung und VR-Bild in Einklang zu bringen, den konnten wir per fMRT noch Sekunden später aufzeichnen. Da lag der Kopf der Probanden aber schon wieder ruhig auf den Luftkissen. Kopfbewegung und Bildgebung gehen normalerweise nicht zusammen, aber wir haben das System sozusagen ausgetrickst.“

Die Forscher konnten so erstmals am gesunden menschlichen Gehirn beobachten, was zuvor nur in Affenversuchen und indirekt an Patienten untersucht werden konnte. Ihr Ergebnis: Ein Areal im posterioren (hinten liegenden) insularen Kortex wies immer dann höhere Aktivierung auf, wenn VR-Brille und Kopfbewegung dem Probanden eine stabile Umwelt vorgaukelten, nicht aber, wenn beide Signale in Konflikt zueinander standen. Dasselbe traf auch auf eine Reihe weiterer Gehirnareale zu, die eine spezielle Rolle in der Verarbeitung von visueller Information bei Eigenbewegung spielen.

Der Forschung eröffnen sich nun neue Wege, das neuronale Zusammenspiel von Bewegung und visueller Wahrnehmung wesentlich zielgenauer untersuchen zu können. Obendrein zeigen die Ergebnisse der Tübinger Forscher erstmals, was im Gehirn passiert, wenn wir in virtuelle Welten eintauchen und den schmalen Grat zwischen Eintauchen und Übelkeit betreten.

Publikation:
Andreas Schindler, Andreas Bartels: Integration of Visual and Non-Visual Self-Motion Cues during Voluntary Head Movements in the Human Brain. NeuroImage 172. S. 597–607. 15. Mai 2018 (Online-Veröffentlichung vor Print). doi: 10.1016/j.neuroimage.2018.02.006

Beteiligte Institutionen:
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN), Universität Tübingen
Fachbereich Psychologie, Universität Tübingen
Max-Planck-Institut für Biologische Kybernetik, Tübingen

Autorenkontakt:
Andreas Schindler
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN)
Telefon +49 7071 29-89120
andreas.schindler@cin.uni-tuebingen.de

Andreas Bartels
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN)
Telefon +49 7071 29-89168
andreas.bartels@cin.uni-tuebingen.de

Pressekontakt CIN:
Dr. Paul Töbelmann
Universität Tübingen
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN), Wissenschaftskommunikation
Telefon +49 7071 29-89108
paul.toebelmann@cin.uni-tuebingen.de
www.cin.uni-tuebingen.de

Pressekontakt MPI:
Beate Fülle
MPI für biologische Kybernetik
Leitung Kommunikation und Öffentlichkeitsarbeit
Telefon +49 (0) 7071 601-777
presse-kyb@tuebingen.mpg.de

Universität Tübingen
Die Universität Tübingen gehört zu den elf deutschen Universitäten, die als exzellent ausgezeichnet wurden. In den Lebenswissenschaften bietet sie Spitzenforschung im Bereich der Neurowissenschaften, Translationalen Immunologie und Krebsforschung, der Mikrobiologie und Infektionsforschung sowie der Molekularbiologie. Weitere Forschungsschwerpunkte sind die Geo- und Umweltforschung, Archäologie und Anthropologie, Sprache und Kognition sowie Bildung und Medien. Mehr als 28.400 Studierende aus aller Welt sind aktuell an der Universität Tübingen eingeschrieben. Ihnen steht ein Angebot von rund 300 Studiengängen zur Verfügung – von der Ägyptologie bis zu den Zellulären Neurowissenschaften.

Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN)
Das Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) ist eine interdisziplinäre Institution an der Eberhard Karls Universität Tübingen, finanziert von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzinitiative von Bund und Ländern. Ziel des CIN ist es, zu einem tieferen Verständnis von Hirnleistungen beizutragen und zu klären, wie Erkrankungen diese Leistungen beeinträchtigen. Das CIN wird von der Überzeugung geleitet, dass dieses Bemühen nur erfolgreich sein kann, wenn ein integrativer Ansatz gewählt wird.

Max-Planck-Institut für biologische Kybernetik
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 84 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Antje Karbe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics