Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko

23.03.2017

Eine Diabetes-Erkrankung erhöht das Herzinfarkt-Risiko deutlich. Einen der Gründe dafür hat jetzt ein Team der Technischen Universität München (TUM) identifiziert: Bei Diabetes lösen sich kleine Blutgefäße um das Herz auf. Dadurch wird der gesamte Herzmuskel in Mitleidenschaft gezogen. Eine mögliche Gegenmaßnahme könnte eine Gen-Therapie sein, die das Gefäßwachstum ankurbelt.

Die Herzkranzgefäße lassen sich mit einem Straßennetz vergleichen: Arterien und Venen bilden die Hauptverkehrswege, von denen zahllose kleinere und kleinste Verbindungsstraßen und Zufahrtswege abzweigen.


Auf dieser Koronarangiografie ist gut zu erkennen, wie sich die Blutgefäße auf dem Herzmuskel verzweigen. Bild: kalus/istockphoto

Quelle: TUM

Wenn eine dieser kleinen Straßen gesperrt ist, hat das kaum Auswirkungen auf den gesamten Verkehrsfluss. Wenn jedoch genug Abfahrten geschlossen sind, wird der Verkehr auch auf der Hauptstraße dichter. Im schlimmsten Fall kann das zum Kollaps des gesamten Systems führen – einem Herzinfarkt.

Ein Team unter Leitung der TUM hat herausgefunden, dass genau das bei einer Diabetes-Erkrankung der Fall sein kann. Ihre Erkenntnisse schildern die Wissenschaftlerinnen und Wissenschaftler um Dr. Rabea Hinkel und Prof. Christian Kupatt, Kardiologen am Klinikum rechts der Isar der TUM, im „Journal of the American College of Cardiology“.

Unterschiede zwischen Herzen von Diabetikern und anderen Patienten

Für ihre Arbeit verglichen sie Herzkranzgefäße von Transplantationspatienten mit und ohne Diabetes. Das Ergebnis: Bei den Proben von Diabetikern war die Anzahl der kleinen Gefäße um das Herz deutlich verringert. Im Labor konnte das Team zeigen, dass bei hohem Blutzuckerspiegel die sogenannten Perizyten abgebaut werden.

„Diese Zellen bilden normalerweise eine Schicht, die kleine Blutgefäße umgibt“, erläutert Rabea Hinkel. „Wir gehen davon aus, dass diese Schicht die Äderchen stabilisiert. Wenn sie angegriffen ist, wird das gesamte Gefäß instabil und löst sich schließlich auf.“

Versuche an Tieren bestätigten die Annahme, dass die kleinen Herzkranzgefäße bei einer unbehandelten Diabetes-Erkrankung immer weniger werden. „Diabetes bleibt bei Patienten oft Jahre und Jahrzehnte unentdeckt. In diesem langen Zeitraum kann es zu extremen Schäden kommen“, sagt Rabea Hinkel.

Therapie mit Thymosin Beta 4

Das Verschwinden der kleinen Blutgefäße ist jedoch nicht unumkehrbar. Hinkel und Kupatt setzten in ihrer Studie auf eine Gen-Therapie, durch die Herzzellen dazu angeregt wurden, verstärkt das Molekül Thymosin Beta 4 zu bilden. Dieses Protein sorgt unter anderem dafür, dass mehr Perizyten gebildet werden. Auf diese Weise gelang es dem Team der TU München, stabile und funktionstüchtige Äderchen wachsen zu lassen.

„Bis solch eine Therapie für Menschen anwendbar ist, wird allerdings noch einige Zeit vergehen“, sagt Christian Kupatt. „Wir konnten aber erstmals anhand eines transgenen Tiermodells, das dem menschlichen Typ I Diabetes sehr nahe kommt, nachweisen, auf welche Weise Zuckerkrankheit das Herz schädigt. Das eröffnet neue Perspektiven für die Behandlung von Erkrankten. Zudem verdeutlichen unsere Erkenntnisse noch einmal, wie wichtig es ist, Diabetes früh zu erkennen.“

Publikation:

R. Hinkel, A. Hoewe, S. Renner, J. Ng, S. Lee, K. Klett, V. Kaczmarek, A. Moretti, K.-L. Laugwitz, P. Skroblin, M. Mayr, H. Milting, A. Dendorfer, B.Reichart, E. Wolf, C. Kupatt, "Diabetes Mellitus–Induced Microvascular Destabilization in the Myocardium", Journal of the American College of Cardiology 69:2 (2007). DOI: 10.1016/j.jacc.2016.10.058.

Kontakt:

Prof. Dr. med. Christian Kupatt
I. Medizinische Klinik und Poliklinik
Klinikum rechts der Isar
Technische Universität München
Tel: +49 89 4140 2947
christian.kupatt@tum.de

Dr. Rabea Hinkel
I. Medizinische Klinik und Poliklinik
Klinikum rechts der Isar
Technische Universität München
rabea.hinkel@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Forscher entschlüsseln Wirkung von Ebola-Impfstoff - Virologen der Uniklinik Köln identifizieren neue Antikörper
08.10.2019 | Uniklinik Köln

nachricht Icaros: Fliegendes Trainingsgerät
07.10.2019 | Deutsche Sporthochschule Köln

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

BiClean – Smarte antibakterielle Oberflächen mittels bidirektionaler Displaytechnologie

14.10.2019 | Biowissenschaften Chemie

Fehlerhafte Proteinfaltung als Alzheimer-Risikomarker – bis zu 14 Jahre vor der Diagnose

14.10.2019 | Biowissenschaften Chemie

Flechten: Teamwork macht den Unterschied

14.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics