Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verbesserung von Heilungschancen bei Nervenverletzungen

18.01.2011
Med-Uni Innsbruck: neue Forschungsergebnisse in der Nervenregeneration

Periphere Nervenverletzungen sind Schädigungen außerhalb des zentralen Nervensystems (Hirn, Rückenmark). Ein typisches Beispiel hierfür sind Extremitäten-Verletzungen bei Motorradunfällen. Als Therapie der ersten Wahl gilt die chirurgische Wiederherstellung, aber für die gezielte Regeneration von Nervenzellfortsätzen bestehen bis dato Grenzen.

Der Innsbrucker Wissenschaftlerin Dr.in Barbara Hausott an der Sektion für Neuroanatomie, Medizinische Universität Innsbruck, ist es nun gelungen, ein Protein zu identifizieren, welches hier eine wesentliche Rolle spielen könnte: Die Regulierung des Sprouty Proteins erlaubt es, die Regeneration von peripheren Nervenläsionen zu verbessern.

Von peripheren Nervenverletzungen der oberen Extremitäten sind beispielsweise alleine in den USA jährlich 360.000 Personen betroffen, größtenteils junge Menschen. Die Ursachen dafür können Sportverletzungen, Unfälle – hier vor allem Motorradunfälle, Überdehnungen, Schnitt- und Stichverletzungen, Verbrennungen usw. sein. Zum Vergleich eine Zahl: Nach Auskunft ÖAMTC (Statistik Austria) verletzten sich beispielsweise im Jahr 2009 rund 9.200 Personen bei Unfällen mit einspurigen Kraftfahrzeugen in Österreich. Traumatische Läsionen am peripheren Nervensystem kommen um das Zehnfache häufiger vor als jene, des zentralen Nervensystems (Hirn, Rückenmark). Die klinische Prognose nach der chirurgischen Behandlung ist unvorhersehbar und für Betroffene oft enttäuschend: Die Lebensqualität kann nicht beibehalten werden, manchmal steht aufgrund der gesundheitlichen Einschränkung sogar ein Berufswechsel an. An der Sektion für Neuroanatomie der Medizinischen Universität Innsbruck wird nun unter der Leitung von Prof. Dr. Lars Klimaschewski intensiv an neuen Behandlungsmöglichkeiten von Nervenläsionen und deren Folgen geforscht. Im Rahmen des D. Swarovski-Förderungsfonds befasst sich die Biologin Dr.in Barbara Hausott mit der Rolle von Sprouty Proteinen in der Axonregeneration von verschiedenen Neuronen.

Die Krux der neuronalen Regeneration

Neuronale Zellfortsätze (Axone) leiten elektrische Impulse zwischen Nervenzellen oder Nervenzelle und Zielgewebe. Gebündelt als periphere Nerven durchziehen sie den Körper. Wenn bei deren Schädigung eine große Distanz zu überbrücken ist, treten gehäuft Probleme auf, die derzeit mit der Opferung und Implantation eines gesunden Nervs behandelt werden. Dennoch bilden sich oft schmerzhafte Nervenknäuel durch übermäßiges Verzweigen des verletzten Nervs an der Läsionsstelle. „Vor diesem Hintergrund sind Substanzen von besonderem Interesse, die das Längenwachstum von peripheren Axonen fördern und kein übermäßiges Verzweigen induzieren“, erklärt Medizinerin Dr.in Maria Auer, die ebenfalls an der Erforschung Regenerations-hemmender Proteine in der Abteilung für Neuroanatomie arbeitet. So genannte Sprouty-Proteine nun hemmen signalgesteuerte Reaktionen wie beispielsweise die Zellvermehrung oder – wie in diesem Fall: das Axonwachstum.

Mit Hilfe von Zellkultur-Modellen peripherer und zentraler Neurone erforschten die Wissenschaftlerinnen in einer ersten Studie das Vorkommen unterschiedlicher Sprouty-Isoformen im peripheren und zentralen Nervensystem. In einer weiteren Studie untersuchten Hausott und Auer die konkrete Funktion von Sprouty beim Axonwachstum sowohl im Entwicklungsalter also auch im Rahmen der Regeneration nach Verletzungen.

Proteinhemmung verbessert Regeneration bei Nervenläsionen

Die Resultate: Das Protein Sprouty kommt in verschiedenen Formen im Nervensystem vor. Zusätzlich konnte gezeigt werden, dass Sprouty das Axonwachstum im zentralen und peripheren Nervensystem hemmt - und zwar sowohl in der Entwicklungsphase wie auch in der Regeneration. „Umgekehrt bedeutet dies, dass die Hemmung von Sprouty zu einem verstärkten und gewünschten Längenwachstum der Axone führt“, so Hausott.

In einer weiteren Arbeit wurde diese Wirkung durch die Behandlung mit dem Wachstumsfaktor Fibroblast Growth Factor (FGF-2) noch verstärkt. Dazu erklärt die Erstautorin der beiden Publikationen Dr.in Hausott: „Bemerkenswert ist vor allem, dass die Hemmung von Sprouty mittels siRNAs (small interfering RNA) zusammen mit FGF-2 einen verstärkten Effekt auf das Längenwachstum von Axonen hat, während aber gleichzeitig die Anzahl der Verzweigungspunkte nicht verändert ist. Das ist besonders wichtig für die Axonregeneration über längere Distanzen, wo es noch einigen Verbesserungsbedarf in der Therapie von peripheren Nervenläsionen gibt.“

Internationale Anerkennung und weitere Forschungsziele

Außerdem führte die Verminderung von Sprouty in Neuronen zu einer vermehrten FGF-2-induzierten Aktivierung des MAP (Mitogen Activated Protein)-Kinase-Signalweges. Diese Aktivierung ist mit großer Wahrscheinlichkeit für die Effekte auf das Axonwachstum verantwortlich. Zusätzlich konnte in den beiden Studien gezeigt werden, dass Sprouty nicht wie bisher angenommen ein rein zytoplasmatisches Protein ist, sondern im Gegensatz zu anderen Zelltypen in Neuronen auch im Zellkern vorkommt. In weiterer Folge soll nun die Rolle von Sprouty in der Nervenregeneration in vivo untersucht werden. Die Erkenntnisse dieser Untersuchungen fanden internationale Beachtung und wurden in den Zeitschriften „Molecular and Cellular Neuroscience“ und „Hippocampus“ veröffentlicht.

Details zur Medizinischen Universität Innsbruck

Die Medizinische Universität Innsbruck mit ihren rund 1.800 MitarbeiterInnen und ca. 2.800 Studierenden ist gemeinsam mit der Universität Innsbruck die größte Bildungs- und Forschungseinrichtung in Westösterreich und versteht sich als Landesuniversität für Tirol, Vorarlberg, Südtirol und Liechtenstein. An der Medizinischen Universität Innsbruck werden drei Studienrichtungen angeboten: Humanmedizin und Zahnmedizin als Grundlage einer akademischen medizinischen Ausbildung und das PhD-Studium (Doktorat) als postgraduale Vertiefung des wissenschaftlichen Arbeitens.

Die Medizinische Universität Innsbruck ist in zahlreiche internationale Bildungs- und Forschungsprogramme sowie Netzwerke eingebunden. In der Forschung liegen die Schwerpunkte im Bereich der Molekularen Biowissenschaften (u.a. bei dem Spezialforschungsbereich „Zellproliferation und Zelltod in Tumoren“, Proteomik-Plattform), der Neurowissenschaften, der Krebsforschung sowie der molekularen und funktionellen Bildgebung. Darüber hinaus ist die wissenschaftliche Forschung an der Medizinischen Universität Innsbruck in der hochkompetitiven Forschungsförderung sowohl national auch international sehr erfolgreich.

Inhaltliche Rückfragen an
Dr. Barbara Hausott (PhD)
Division of Neuroanatomy
Department of Anatomy,
Histology and Embryology
Innsbruck Medical University
Müllerstr. 59, A-6020 Innsbruck
T: 0043-(0)512-9003 71162
barbara.hausott@i-med.ac.at
http://www.neuroanatomie.at/
Öffentlichkeitsarbeit
Mag. Ulrike Delacher, MSc
(Leitung: Mag. Amelie Döbele)
Medizinische Universität Innsbruck
Innrain 52, 6020 Innsbruck, Austria
Telefon: +43 512 9003 70083
Mobil: +43 676 8716 72082
Ulrike.delacher@i-med.ac.at
www.i-med.ac.at

Ulrike Delacher | Uni Innsbruck
Weitere Informationen:
http://www.i-med.ac.at

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Modernste Diagnostik eröffnet neue Perspektiven für eine "personalisierte“ Medizin
14.08.2018 | Universitätsklinikum Magdeburg

nachricht Ist Salz besser als sein Ruf?
10.08.2018 | Universitätsspital Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics