Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trickreiche Jagd nach Eindringlingen: Wie das Immunsystem die Gefährlichkeit von Erregern prüft

12.10.2012
Wissenschaftler unter Federführung der Universität Bonn haben einen Mechanismus entschlüsselt, der infizierte Zellen befähigt, lebende von toten Erregern zu unterscheiden.

Erst dadurch können die von Eindringlingen befallenen Zellen entscheiden, wie stark die Immunantwort gegen die Erreger ausfallen muss. Die Ergebnisse liefern die Grundlage, um neuartige Impfstrategien zu entwickeln. Das renommierte Journal der European Molecular Biology Organisation (EMBO) veröffentlicht nun die überraschenden Resultate.

Milliarden von Krankheitserreger attackieren tagtäglich unseren Körper - und werden meistens vom Immunsystem in Schach gehalten. „Es handelt sich dabei um einen Wettlauf mit der Zeit“, verdeutlicht Prof. Dr. Percy Knolle, von den Instituten für Molekulare Medizin und Experimentelle Immunologie an der Universität Bonn. Die Zahl der bakteriellen Erreger verdoppelt sich etwa alle 20 Minuten. „Der Organismus wird mit gefährlichen Keimen überschwemmt, wenn er nicht rechtzeitig gegensteuert.“ Die Wachposten des Immunsystems in Form von Fresszellen sind gleichmäßig über den gesamten Körper verteilt, allerdings in geringer Dichte. Erst wenn an einer bestimmten Stelle Alarm geschlagen wird, werden die im Blut zirkulierenden Truppen der Immunabwehr dort konzentriert, um die Eindringlinge schnell unschädlich zu machen.

Wie erkennen die Wachposten, wie gefährlich die Angreifer sind?

„Bislang war unklar, wie das Immunsystem unterscheidet, ob eine starke Abwehr vonnöten ist oder ob auch eine schwächere Reaktion ausreicht“, sagt Dr. Zeinab Abdullah, Erstautorin und wissenschaftliche Mitarbeiterin von Prof. Knolle. So ist es ein Unterschied, ob vom Körper ein totes Bakterium beseitigt werden muss, das nur noch geringen Schaden anrichten kann, oder ob es sich um ein lebendes Bakterium handelt, das sich weiter vermehren und Krankheiten verursachen kann. Während bei dem toten Mikroorganismus eine schwächere Entzündungsreaktion und damit eine geringe Mobilisation von Immunzellen zum Ort der Infektion ausreicht, erfordern aktive und gefährliche Erreger in der Regel einen weitaus umfangreicheren Einsatz. „Die starke Entzündungsreaktion ist eine Abwehrstrategie, weil dabei Botenstoffe ausgesendet werden, die weitere Fresszellen und Effektorzellen anlocken, die die Eindringlinge unschädlich machen“, berichtet Prof. Knolle.

Bakterien in Rohmilchkäse dienen als Modellorganismen im Labor

Die Wissenschaftler untersuchten nun beispielhaft an dem Bakterium Listeria monocytogenes, wie sich diese Mikroorganismen in lebenden Zellen verhalten und wie das Immunsystem darauf reagiert. Listerien können bei Menschen und Tieren Infektionskrankheiten verursachen, deshalb sollte etwa Rohmilchkäse während der Schwangerschaft nicht verzehrt werden. „Uns dienen Listerien als Modellorganismen, an denen wir erforschen, wie solche verbreiteten Infektionskrankheiten besser bekämpft werden können“, sagt Dr. Abdullah. Wie unterscheiden Zellen, ob sie mit toten oder lebendigen Listerien infiziert sind? Dieser Frage gingen die Forscher an Zellkulturen von Mäusen nach.

Lebende Bakterien legen unabsichtlich eine feine „Duftspur“

„In vielen Situationen erkennt das Immunsystem Eindringlinge an bestimmten Rezeptoren, die wie Antennen an der Oberfläche der Erreger herausragen“, erläutert Prof. Knolle. Allerdings sind sie sowohl bei lebenden als auch toten Erregern vorhanden. „Es muss also einen anderen Weg geben, wie die Zellen lebendige von toten Eindringlingen unterscheiden“, berichtet der Immunologe der Universität Bonn. Die Forscher stellten fest, dass Listerien im Inneren von Fresszellen winzige Mengen Nukleinsäuren freisetzen. „Damit versuchen die Bakterien offenbar, die Immunantwort in den Zellen abzuschwächen“, sagt Prof. Knolle. Dies funktioniert ganz ähnlich, wie wenn die Funkverbindung bei einer feindlichen Armee gestört wird. Allerdings legen die Bakterien damit unabsichtlich auch eine feine „Duftspur“, die von den zellulären Sensoren „RIG-I“, „MDA5“ und „STING“ im Innern der Fresszellen erkannt werden kann. „Es handelt sich dabei um eine sehr frühe und differenzierte Form der Erkennung, dass es sich um ein lebendes und damit potenziell gefährlicheres Bakterium handelt“, berichtet Dr. Abdullah. Denn tote Listerien würden keine Nukleinsäurespur mehr absondern.

Ergebnisse bieten Chancen für neue Impfstrategien

Sind die intrazellulären Sensoren der Fresszellen durch die Bakterien-Nukleinsäuren aktiviert, wird eine Signalkaskade in Gang gesetzt, die zur Produktion von Substanzen führen, die antibakteriell wirken und eine starke Entzündungsreaktion auslösen. Dies führt zur Rekrutierung vieler weiterer Immunzellen mit dem Ziel, die Eindringlinge auszuschalten und eine starke, lang anhaltende Immunität zu etablieren. „Wir haben mit unseren Befunden den molekularen Mechanismus entschlüsselt, wie die Stärke einer Entzündungsreaktion und damit auch die Entstehung von protektiver Immunität gesteuert wird“, sagt Prof. Knolle. „Mit unseren Ergebnissen können wir nun verstehen, warum eine Infektion mit einem lebenden Erreger eine deutlich stärkere und längere Immunantwort auslöst als mit einem toten Eindringling.“ Dieses Wissen sei entscheidend, um neue Impfstrategien zu entwickeln.

Die Forschungsarbeiten fand im Rahmen des Sonderforschungsbereichs 670 „Zellautonome Immunität“ und des an der Universität Bonn neu etablierten Exzellenclusters „Immunosensation“ statt. Beteiligt an der Entdeckung waren das Institut für Klinische Chemie und Klinische Pharmakologie der Universität Bonn, die Universität Gießen, die Technische Universität München, die Ludwig-Maximilians-Universität München, das Helmholtz Zentrum München, die McGill University Montreal (Kanada), und das Aichi Institute of Technologie in Japan beteiligt.

Publikation: RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids, EMBO Journal, DOI: 10.1038/emboj.2012.279

Kontakt:

Prof. Dr. Percy Knolle
Direktor des Instituts für Molekulare Medizin und Immunologie
Tel. 0228/28711050
E-Mail: pknolle@uni-bonn.de
Dr. Zeinab Abdullah
Institut für Molekulare Medizin und Immunologie
Tel. 0228/28711050
E-Mail: Zeinab.Abdullah@ukb.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Die Gene sind nicht schuld
20.07.2018 | Technische Universität München

nachricht Staus im Gehirn: FAU-Forscher identifizieren eine Ursache für Parkinson
20.07.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics