Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarzer Hautkrebs - der Wolf im Schafspelz

11.10.2012
Schwarzer Hautkrebs ist so gefährlich, weil er dazu neigt, früh Metastasen zu bilden.

Neue Behandlungsansätze nutzen unter anderem die Fähigkeit der Immunabwehr, bösartige Zellen aufzuspüren und zu zerstören. Doch diese Strategie ist oft nur vorübergehend wirksam. Warum dies so ist, haben Forscherteams der Universität Bonn und der Universitätsmedizin Mainz herausgefunden:

In der durch die Behandlung verursachten Entzündungsreaktion wandeln die Tumorzellen vorübergehend ihre äußere Gestalt und werden dadurch für Abwehrzellen unsichtbar. Diese Erkenntnisse bilden eine wichtige Grundlage für die Verbesserung von Kombinationstherapien.

In Deutschland erkranken jährlich etwa 15.000 Menschen an Schwarzem Hautkrebs, etwa 2.000 Menschen sterben pro Jahr daran. Das maligne Melanom ist die Hautkrankheit, die am häufigsten tödlich verläuft. Die besondere Bösartigkeit rührt daher, dass schon kleine Tumoren über die Lymph- und Blutbahnen streuen können.

Seit mehreren Jahren untersucht die Arbeitsgruppe um Prof. Dr. Thomas Tüting, Leiter des Labors für Experimentelle Dermatologie am Universitätsklinikum Bonn und Leiter des hier beschriebenen Forschungsprojektes, zusammen mit der an der Studie beteiligten Arbeitsgruppe von Univ.-Prof. Dr. Thomas Wölfel an der III. Medizinischen Klinik der Universitätsmedizin Mainz, die Wirkung einer zielgerichteten Immuntherapie mit tumorspezifischen Abwehrzellen.

Tumorzellen verhalten sich wie der Wolf im Schafspelz

In Versuchen mit Mäusen, die erblich bedingt an Schwarzem Hautkrebs erkranken, gelang es den Bonner Forschern, mit sogenannten zytotoxischen T-Zellen fortgeschrittene Tumore zu zerstören. „Aber sie kommen - genau wie bei Patienten in der Klinik - nach einiger Zeit wieder“, erläutern Dr. Jennifer Landsberg und Dr. Judith Kohlmeyer vom Labor für Experimentelle Dermatologie am Universitätsklinikum Bonn und Erstautorinnen der Studie.

Diese Therapieform löst eine Entzündung aus. Nun fanden die Wissenschaftler heraus, dass die Melanomzellen genau durch diese begleitende entzündliche Reaktion ihre äußere Gestalt wandeln. „Sie verhalten sich wie Wölfe im Schafspelz und entgehen dadurch der Erkennung und Zerstörung durch Abwehrzellen“, sagt Marcel Renn, ebenfalls Erstautor der Studie.

Das Immunsystem kann Tumore bekämpfen – aber auch schützen

Auf der Suche nach den zugrunde liegenden Mechanismen brachten die Forscher feingewebliche Untersuchungen der Tumoren auf die richtige Spur: Therapieresistente Melanome zeigten eine deutlich stärkere Entzündungsreaktion mit vielen Fresszellen des Immunsystems, den sogenannten Makrophagen.

Ein hauptsächlich von diesen Immunzellen ausgeschütteter Botenstoff - der Tumornekrosefaktor-alpha - konnte den Gestaltwandel der Melanomzellen direkt in der Kulturschale im Labor herbeiführen. Die so behandelten Zellen wurden in der Folge von den Abwehrzellen kaum noch erkannt. „Das Immunsystem ist eben ein zweischneidiges Schwert“, erklärt Prof. Tüting. „Es kann den Tumor bekämpfen – aber auch schützen.“ Solche Veränderungen im Tumorgewebe sind wahrscheinlich von großer Bedeutung für die Ausbildung einer Therapieresistenz. „Nach neueren Erkenntnissen ist davon auch die Behandlung mit Hemmstoffen betroffen, die die Signalübertragung in Tumorzellen unterbinden“, führt Prof. Tüting aus.

Melanomzellen verlieren ihre typischen Eigenschaften

Molekulargenetische Untersuchungen ergaben, dass Melanomzellen aus therapieresistenten Tumoren die für Pigmentzellen typischen Merkmale verloren hatten. Stattdessen zeigten sie Züge von Bindegewebszellen. „Diesen Gestaltwandel können Melanomzellen möglicherweise deshalb so leicht vollziehen, weil sie in der embryonalen Entwicklung von Zellen in der Neuralleiste abstammen, die auch Bindegewebs- und Nervenzellen ausbilden können“, sagt Prof. Dr. Michael Hölzel, Mitautor aus dem Institut für klinische Pharmakologie und klinische Chemie am Universitätsklinikum Bonn.

Ergebnisse lassen sich auch auf den Menschen übertragen

Die zunächst in einem Tiermodell in Bonn gewonnenen Erkenntnisse wurden an der Universitätsmedizin Mainz an menschlichen Melanomzellen mit dazugehörigen Abwehrzellen unterschiedlicher Antigenspezifität in der Kulturschale nachvollzogen. Die Melanomzellen reagierten auf den Botenstoff Tumornekrosefaktor-alpha ebenfalls mit einem Verlust der Pigmentzell-Eigenschaften und konnten dann von Pigmentzell-spezifischen Abwehrzellen nicht mehr erkannt werden. „Die Erkennung durch andere Abwehrzellen, die spezifische genetische Veränderungen in den Melanomzellen aufspüren können, war hierdurch jedoch nicht beeinträchtigt. Dies bestätigt die Relevanz solcher Antigene, die wir in Mainz in verschiedenen Patientenmodellen nachgewiesen haben“, betont Prof. Dr. Thomas Wölfel, Leiter der an der Studie beteiligten Arbeitsgruppe an der III. Medizinischen Klinik der Universitätsmedizin Mainz und ebenfalls Co-Autor der Studie.

Wichtige Erkenntnisse für neue Behandlungsstrategien

Sobald jedoch der Tumornekrosefaktor-alpha nicht mehr auf die Melanomzellen des Menschen und der Maus einwirkte, gewannen sie ihre Pigmentzell-Eigenschaften wieder zurück. Dann konnten sie auch wieder von allen Immunabwehrzellen erkannt und bekämpft werden. Aus all diesen Erkenntnissen ergeben sich wichtige Hinweise für neue Behandlungsstrategien. So sollen in Zukunft Abwehrzellen gegen Antigene unterschiedlicher Kategorien und Spezifität zum Einsatz kommen und gleichzeitig die von den Tumorzellen ausgenutzte Entzündung therapeutisch gebremst werden. „Unser experimentelles Modellsystem wird uns dabei helfen, möglichst rasch optimal wirksame Kombinationstherapien zu entwickeln“, sagt Prof. Tüting. „Bis zur klinischen Anwendung derartiger Strategie werden jedoch noch einige Jahre vergehen.“

Die Ergebnisse sind nun im renommierten Fachjournal „Nature“ online abrufbar.

Weitere Informationen:
Publikation: Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation, Nature, DOI: 10.1038/nature11538
Kontakt:
Prof. Dr. Thomas Tüting
Oberarzt an der Klinik und Poliklinik für Dermatologie und Allergologie
Leiter des Labors für Experimentelle Dermatologie
Universitätsklinikum Bonn
Tel. 0228/287-16231
E-Mail: Thomas.Tueting@ukb.uni-bonn.de
Univ.-Prof. Dr. med. Thomas Wölfel
Stellvertretender Direktor der III. Medizinischen Klinik
und Sprecher des Graduiertenkollegs GRK 1042 „Immuntherapie“
Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Telefon: 06131 17- 7394, Fax: 06131 17-6406
E-Mail: thomas.woelfel@unimedizin-mainz.de
Pressekontakt
Barbara Reinke, Stabsstelle Kommunikation und Presse Universitätsmedizin Mainz,
Telefon 06131 17-7428, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de
Rheinische Friedrich-Wilhelms-Universität Bonn, Abteilung Presse und Kommunikation, Tel.: 0228/73-7647, Fax: 0228/73-7451, E-Mail: presse@uni-bonn.de
Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige Einrichtung dieser Art in Rheinland-Pfalz. Mehr als 60 Kliniken, Institute und Abteilungen gehören zur Universitätsmedizin Mainz. Mit der Krankenversorgung untrennbar verbunden sind Forschung und Lehre. Rund 3.500 Studierende der Medizin und Zahnmedizin werden in Mainz kontinuierlich ausgebildet.

Dr. Renée Dillinger-Reiter | idw
Weitere Informationen:
http://www.unimedizin-mainz.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Zwei Städte, ein Operationstisch
17.10.2018 | Otto-von-Guericke-Universität Magdeburg

nachricht Antiblockiersystem in Arterien schützt vor Herzinfarkt
16.10.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics