Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlaganfall: Wenn Helferzellen schaden

16.11.2012
Das Immunsystem trägt bei Schlaganfällen zur Schädigung des Gehirns bei. Wissenschaftler der Universitäten Würzburg und Münster zeigen im renommierten Fachjournal BLOOD nun erstmals, wie bestimmte T-Helferzellen in das Geschehen verwickelt sind.

Den Ablauf eines Schlaganfalls stellte sich die Wissenschaft bislang so vor: Ein Blutgefäß, das das Gehirn mit Sauerstoff und lebenswichtigen Nährstoffen versorgt, wird plötzlich von einem Blutgerinnsel verstopft. Es kommt zum Schlaganfall, das Gehirn nimmt Schaden. Viele Betroffene leiden danach an neurologischen Ausfällen, etwa an schweren Lähmungen oder Sprachstörungen.


Nach einem Schlaganfall lassen sich regulatorische T-Zellen (grün) vor allem in den Gehirngefäßen (rot) nachweisen, wo sie mit der Gefäßwand in Wechselwirkung treten und das Gefäß verstopfen (obere Bildreihe). Entsprechend ist die Hirndurchblutung (untere Bildreihe) nach einem Schlaganfall bei Mäusen ohne regulatorische T-Zellen (rechts) deutlich besser als bei normalen Mäusen (links). Zur Messung der Hirndurchblutung wurden die Tiere in einem Kernspintomographen (MRT) untersucht.
Bild: Christoph Kleinschnitz / Heinz Wiendl

„Dieses Bild muss um eine weitere wichtige Komponente, nämlich das Immunsystem, ergänzt werden“, sagt Professor Christoph Kleinschnitz, Leiter der Schlaganfallmedizin an der Neurologischen Universitätsklinik Würzburg. Das hat er in einem Gemeinschaftsprojekt mit der Arbeitsgruppe von Professor Heinz Wiendl vom Universitätsklinikum Münster nachgewiesen.

Regulatorische T-Zellen als Übeltäter

Gewonnen wurde die neue Erkenntnis an Mäusen, deren Immunsystem durch einen genetischen Defekt keine regulatorischen T-Helferzellen besitzt: Bei ihnen ist nach einem Schlaganfall die Schädigung des Gehirns um rund 75 Prozent geringer als bei normalen Mäusen. Außerdem entwickeln die Tiere deutlich weniger neurologische Ausfälle.

Regulatorische T-Helferzellen sind ein wichtiger Bestandteil des Immunsystems und eigentlich dafür da, allzu starke Immunreaktionen des Körpers einzudämmen. Durch diese regulierenden Eigenschaften kommt ihnen bei vielen Erkrankungen eine schützende Funktion zu, beispielsweise bei der Multiplen Sklerose oder bei Rheuma.

Paradigmenwechsel in der Immunologie

„Die Tatsache, dass regulatorische T-Zellen bei akuten Schlaganfällen den Hirnschaden derart verstärken, war daher für uns völlig überraschend“, berichtet Heinz Wiendl, Direktor der Klinik für Neurologie, Abteilung für entzündliche Erkrankungen des Nervensystems und Neuroonkologie am Universitätsklinikum Münster: „Aus Sicht der Immunologie können wir hier ohne Übertreibung von einem Paradigmenwechsel sprechen.“

In ihrer Arbeit sind die Immunologen auch der Frage nachgegangen, mit welchen Mechanismen regulatorische T-Zellen die schädigende Wirkung eines Schlaganfalls verstärken. Sie fanden heraus, dass dieser Zelltyp besonders in der Frühphase nach einem Schlaganfall mit Blutplättchen und der Blutgefäßwand in Wechselwirkung tritt. Dadurch wird die Verstopfung der Hirngefäße verschlimmert und das Gehirn immer schlechter durchblutet.

Die nächsten Untersuchungen

Jetzt wollen die Wissenschaftler prüfen, ob sich die Befunde auf den Menschen übertragen lassen. Ist das der Fall, dann könnten Schlaganfälle künftig mit Medikamenten behandelt werden, die die regulatorischen T-Zellen beeinflussen.

„Das wäre eine kleine medizinische Revolution“, meint Kleinschnitz. Denn der Schlaganfall zählt zu den Volkskrankheiten und ist mittlerweile die zweithäufigste Todesursache weltweit. Wirksame Therapien sind rar. Doch bis aus der Entdeckung ein Medikament wird, seien noch eine ganze Reihe weiterer Untersuchungen notwendig, wie Kleinschnitz betont.

Förderer der Forschungsarbeiten

Finanziell gefördert wurden diese Arbeiten von der Deutschen Forschungsgemeinschaft (DFG) und der Else-Kröner-Fresenius-Stiftung. Die DFG hat die Arbeit im Rahmen des Exzellenzclusters „Cells in motion“ in Münster und im Sonderforschungsbereich 688 in Würzburg unterstützt.

„Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature“, Christoph Kleinschnitz, Peter Kraft, Angela Dreykluft, Ina Hagedorn, Kerstin Göbel, Michael K Schuhmann, Friederike Langhauser, Xavier Helluy, Tobias Schwarz, Stefan Bittner, Christian T Mayer, Marc Brede, Csanad Varallyay, Mirko Pham, Martin Bendszus, Peter Jakob, Tim Magnus, Sven G Meuth, Yoichiro Iwakura, Alma Zernecke, Tim Sparwasser, Bernhard Nieswandt, Guido Stoll, Heinz Wiendl. Blood; online publiziert am 15.11.2012, doi:10.1182/blood-2012-04-426734

Kontakt

Prof. Dr. Christoph Kleinschnitz, Neurologische Universitätsklinik Würzburg, T (0931) 201-23756, christoph.kleinschnitz@uni-wuerzburg.de

oder Prof. Dr. Heinz Wiendl, Klinik für Neurologie – Abteilung für entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Universitätsklinikum Münster, T (0251) 83-46810, heinz.wiendl@ukmuenster.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Jenaer Sepsisexperten erforschen im EU-Verbund personalisierte Immuntherapie bei Sepsis
11.02.2020 | Universitätsklinikum Jena

nachricht Maßgeschneiderte Immuntherapie bei Sepsis
10.02.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer

19.02.2020 | Informationstechnologie

Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen

19.02.2020 | Biowissenschaften Chemie

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics