Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenproteine für Fleischfreunde

28.11.2018

In Mensa, Kantine und Supermarktregal gehören pflanzliche Ersatzprodukte für Hähnchenschnitzel und Rindersteaks mittlerweile zum gängigen Angebot. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) nehmen gemeinsam mit Kollegen der TU Berlin die Herstellung dieser Produkte in den Blick. Ihr Ziel: Den proteinreichen Lebensmitteln, etwa auf der Grundlage von Sojabohnen oder Erbsen, eine möglichst fleischähnliche Textur zu verleihen.

Aus gesundheitlichen, ethischen oder ökologischen Gründen entscheiden viele Menschen dazu, ihren Fleischkonsum zu reduzieren. Aber nicht alle, die ihren Eiweißbedarf ganz oder teilweise mit pflanzlichen Ersatzprodukten decken, möchten auch auf den für Fleisch typischen Eindruck beim Kauen verzichten.


Der Fleischtextur auf der Spur: Die Mikrocomputertomographie (µCT) macht die Produktstruktur sichtbar.

(Abb.: Patrick Wittek, KIT)

„Dieses Mundgefühl beruht vor allem auf der faserähnlichen Textur von Fleisch“, erklärt Dr. Azad Emin vom KIT. Der Verfahrenstechniker leitet die Nachwuchsgruppe „Extrusion von Biopolymeren“ im Institutsteil Lebensmittelverfahrenstechnik (LVT) des Instituts für Bio- und Lebensmitteltechnik des KIT.

Die Lebensmittelindustrie nutzt die Extrusion – eine Technik, bei der eine Masse durch eine Düse gepresst wird – schon seit langem, um zum Beispiel Erdnussflips oder Frühstückscerealien herzustellen.

Das Verfahren eignet sich auch für die Produktion von fleischanalogen Produkten aus pflanzlichen Proteinen: In der Nassextrusion wird die mit Wasser versetzte teigartige Rohstoffmasse mittels zweier rotierender Schneckenwellen durch ein Gehäuse befördert, erhitzt und am Ende durch eine gekühlte Düse gepresst.

Damit vegetarische Burger-Patties oder vegane Schnitzel den Fleischprodukten aber nicht nur in Aussehen, Geruch und Geschmack, sondern auch in der Textur zum Verwechseln ähnlich sind, wollen die Forscherinnen und Forscher am LVT dazu beitragen, die Struktur von Produkten aus Pflanzenproteinen noch genauer an die von Tierfleisch anzugleichen.

Um mehr über die Wechselwirkungen zwischen Druck, Temperatur, Strömung, Scherkräften und Rohstoffeigenschaften zu erfahren, untersuchen sie die Bedingungen in der Produktionsanlage – auch „Extruder“ genannt – sehr genau. Denn bislang war nur wenig darüber bekannt, wie der Prozess im Detail funktioniert.

„Wir haben einen Ansatz und eine Methode entwickelt, die es ermöglichen, den Prozess mit Fokus auf Strukturveränderungen zu untersuchen und zu kontrollieren“, sagt Emin. Bisher habe sich die Produktentwicklung nur zeitaufwendig und kostspielig empirisch, also durch Versuch und Irrtum, vorantreiben lassen.

Strömungssimulationen und Strömungsmessungen innerhalb des Extruders sowie Einblicke in das Zusammenspiel von Fließeigenschaften und thermomechanischen Beanspruchungen geben Aufschluss über den Verfahrensprozess und die dadurch hervorgerufenen strukturellen Veränderungen der pflanzlichen Proteine.

Die Untersuchungen der Karlsruher Wissenschaftler sind Teil des Forschungsprojekts „Texturierungsmechanismen bei der Nassextrusion von Soja- und Erbsenprotein“ der Industriellen Gemeinschaftsforschung der Arbeitsgemeinschaft industrieller Forschungsvereinigungen. Das Bundesministerium für Wirtschaft und Energie förderte das Projekt seit 2015 für die Laufzeit von drei Jahren mit insgesamt 690 000, das KIT erhielt davon rund 250 000 Euro. Weitere Projektbeteiligte waren die TU Berlin und das Deutsche Institut für Lebensmitteltechnik in Quakenbrück.

„In unserer weiteren Forschung wollen wir die Struktur und das Mundgefühl unter anderem durch Hinzufügen von Lipiden und vorstrukturierten Proteinkomponenten fleischähnlicher gestalten“, sagt Azad Emin und betont, dass nicht zuletzt angesichts der wachsenden Weltbevölkerung die Versorgung mit pflanzlichem Protein immer wichtiger werde.

Bildunterschrift: Der Fleischtextur auf der Spur: Die Mikrocomputertomographie (µCT) macht die Produktstruktur sichtbar. (Abb.: Patrick Wittek, KIT)

Weiterer Kontakt:
Sarah Werner, Redakteurin/Pressereferentin, Tel.: +49 721 608-21170, E-Mail: sarah.werner@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 500 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Wissenschaftliche Ansprechpartner:

Sarah Werner, Redakteurin/Pressereferentin, Tel.: +49 721 608-21170, E-Mail: sarah.werner@kit.edu

Weitere Informationen:

http://sarah.werner@kit.edu
http://www.sek.kit.edu/presse.php

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom
01.04.2020 | Universitätsklinikum Würzburg

nachricht Pool-Testen von SARS-CoV-2 Proben erhöht die Testkapazität weltweit um ein Vielfaches
31.03.2020 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom

01.04.2020 | Medizin Gesundheit

Unternehmenswissen - Wie gelingt der Umstieg von Präsenz auf Online?

01.04.2020 | Seminare Workshops

SmartKai – „Einparkhilfe“ zur Vermeidung von Schäden an Schiffen und Hafeninfrastruktur

01.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics