Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie passt sich das Herz-Kreislaufsystem an die Schwerelosigkeit an?

02.03.2010
MHH-Forscher will von der Raumfahrt lernen
Neuer MHH-Podcast

Forscher der Medizinischen Hochschule Hannover (MHH) wollen von Kosmonauten lernen, wie Kreislaufprobleme entstehen. "Wir hoffen durch den Vergleich der Daten von Patienten und Kosmonauten die Ursachen für Kreislaufprobleme besser zu verstehen und sie in Zukunft effektiver behandeln zu können", sagt PD Dr. Jens Tank, Leiter der Arbeitsgruppe Klinische Pharmakologie des Herz-Kreislaufsystems am MHH-Institut für Klinische Pharmakologie.

In dem Forschungsprojekt untersucht er die Auswirkungen der Langzeitschwerelosigkeit auf die Regulation der Herz-Kreislauffunktion bei Kosmonauten. "Wir arbeiten dazu eng mit einer Arbeitsgruppe vom Moskauer Institut für biomedizinische Probleme (IMBP) unter der Leitung von Professor Roman Markovich Bajewski zusammen", erzählt der Facharzt für Klinische Pharmakologie und Innere Medizin.

Professor Bajewski, ein Pionier der Raumfahrtmedizin, ist mit verantwortlich für die Gesundheitskontrolle der Kosmonauten während ihres sechsmonatigen Aufenthaltes an Bord der Internationalen Raumstation (ISS). Ziel des Projektes ist es, ein einfaches Gerät zu entwickeln und herzustellen, das zur Testung der Kreislaufregulation an Bord der ISS genutzt werden kann.

In einem ersten Teilprojekt entwickelten die Wissenschaftler das Gerät "Puls", das vier Jahre lang im russischen Modul der ISS erfolgreich eingesetzt wurde. "An insgesamt acht Kosmonauten konnten wir mit Hilfe einfacher Messungen von Pulsfrequenz und Atemfrequenz, während sechs Monaten im All und in den ersten Tagen nach der Landung wichtige Erkenntnisse sammeln", sagt Dr. Tank. In einem zweiten Schritt entwickelten die Wissenschaftler das Gerät "Pneumocard", das seit März 2007 an Bord der ISS eingesetzt wird. Es erlaubt, dank zweier zusätzlicher Messkanäle, Aussagen zur Funktion des Herzens. "Auch diese Messungen, die von den Kosmonauten selbstständig und in Perfektion durchgeführt werden, liefern bereits interessante Ergebnisse", berichtet der Forscher.

180 Tage lang sind die Astronauten auf der ISS extremen körperlichen und psychischen Belastungen ausgesetzt. Getrennt von Familie und Freunden, in einer künstlichen Raumstation, umgeben von lebensfeindlichen Bedingungen müssen sie höchste Leistungen erbringen. Der Körper muss allerdings völlig ohne Schwerkraft auskommen, an die er ein Leben lang gewöhnt war. Die Orientierung und einfache Bewegungen fallen anfangs schwer, das Blut steigt zu Kopf, die Nase ist verstopft, man schläft schlecht und einige Kosmonauten kämpfen in den ersten Tagen mit der Raumkrankheit. Langfristig merken die Muskeln und die Knochen, dass sie nicht mehr gegen die Schwerkraft ankämpfen müssen und verlieren an Masse. Auch das Herz wird kleiner. "Insgesamt fühlen sich die Kosmonauten nach der Anpassungsphase aber sehr wohl. Die ersten Ergebnisse von "Pneumocard" zeigen, dass die Schwerelosigkeit für das Herz und den Kreislauf eher gut sind, aber jeder Kosmonaut etwas anders reagiert", erklärt Dr. Tank.

Viel schwieriger scheint die erneute Anpassung an die Schwerkraft nach der Landung zu sein. Der Wiederaufbau der Muskulatur, des Knochens sowie der körperlichen Leistungsfähigkeit erfordern Zeit und spezielle Trainingsprogramme. "Große Probleme haben die Kosmonauten in den ersten Tagen nach der Landung mit längerem Stehen. Das Herz rast und gelegentlich kommt es auch zu einer Ohnmacht. Derartige Störungen der Kreislaufregulation treten auch bei Patienten auf", sagt der Mediziner. Fachbegriffe für diese Störung sind Orthostatische Intoleranz oder Synkopen. Diese Patienten interessieren die Arbeitsgruppe von Dr. Tank besonders, da sie bisher schlecht therapierbar sind.

Forschung zu Hören: Hören Sie sich dazu den neuen MHH-Podcast Weltraumedizin unter http://www.mh-hannover.de/mhh-podcast.html an.

Weitere Informationen erhalten Sie bei PD Dr. med. Jens Tank, Facharzt für Klinische Pharmakologie und Innere Medizin, Telefon (0511) 532-2723, tank.jens@mh-hannover.de.

Stefan Zorn | idw
Weitere Informationen:
http://www.mh-hannover.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom
01.04.2020 | Universitätsklinikum Würzburg

nachricht Pool-Testen von SARS-CoV-2 Proben erhöht die Testkapazität weltweit um ein Vielfaches
31.03.2020 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Invasive Arten mit Charisma haben’s leichter

06.04.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics