Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Parkinson-Forschung: Schutz vor neuronalem Zelltod

01.03.2013
LMU-Forscher identifizieren einen neuen Signalweg, über den das Parkin-Gen Nervenzellen vor dem Absterben schützt.

Parkinson ist eine der häufigsten neurodegenerativen Erkrankungen. Parkinson-Kranke zittern unkontrolliert und verlieren an Beweglichkeit. Die Gesamtzahl der an Parkinson Erkrankten in Deutschland wird auf etwa 300.000 geschätzt.

Meist tritt die Krankheit zwischen dem 50. und 70. Lebensjahr auf. Ursache ist das Absterben von Nervenzellen (Neuronen) in einer Region des Mittelhirns, der sogenannten Substantia nigra, die in neuronale Schaltkreise zur Regulation der Motorik eingebunden ist. Bei etwa zehn Prozent der Fälle sind Genmutationen für die Parkinson-Erkrankung verantwortlich, darunter Mutationen im Parkin-Gen.

„Diese Gene sind für Wissenschaftler besonders interessant, da eine Aufklärung ihrer Funktion Einblicke in die Mechanismen der Parkinson-Erkrankung erlaubt“, sagt Dr. Konstanze Winklhofer vom Adolf-Butenandt-Institut der Ludwig-Maximilians-Universität (LMU) München und dem Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE). Die Arbeitsgruppe um Konstanze Winklhofer hat bereits in früheren Studien demonstrieren können, dass Parkin Nervenzellen unter Stressbedingungen vor Zelltod schützen kann. Im Rahmen dieser Untersuchungen fiel auf, dass der Funktionsverlust von Parkin Mitochondrien, die die Zellen mit Energie versorgen, beeinträchtigt. Nun konnte die Arbeitsgruppe den Mechanismus dieser Schutzwirkung aufklären.

„Wir haben beobachtet, dass ein bislang nicht bekannter Signalweg für die neuroprotektive Wirkung von Parkin verantwortlich ist“, sagt Konstanze Winklhofer. Bei dem neu entdeckten Signalweg spielt das Protein NEMO eine entscheidende Rolle. Parkin wirkt als Enzym, das an NEMO eine Kette von Ubiquitin-Molekülen anhängt. Dadurch kann NEMO eine nachgeschaltete Abfolge von Signalen aktivieren. Dem Team um Konstanze Winklhofer ist es gelungen, ein Zielgen dieses Signalwegs zu identifizieren, das für das mitochondriale Protein OPA1 kodiert. OPA1 vermittelt die Schutzwirkung von Parkin auf die Mitochondrien und verhindert dadurch neuronalen Zelltod.

„Daraus können sich neue therapeutische Strategien ergeben, die darauf abzielen, diesen Signalweg effizienter zu aktivieren beziehungsweise unter Stressbedingungen die Bildung von OPA1 zu steigern“, sagt Winklhofer.

Der neu identifizierte Signalweg ist möglicherweise auch für andere neurologische Erkrankungen relevant, bei denen ein Verlust von Nervenzellen auftritt. In laufenden Projekten verfolgt das Team um Konstanze Winklhofer, welche weiteren Zielmoleküle dieses Signalweges sich für protektive und therapeutische Interventionen eignen.

Publikation:
The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO
Anne Kathrin Müller-Rischart, Anna Pilsl, Patrick Beaudette, Maria Patra, Kamyar Hadian, Maria Funke, Regina Peis, Alexandra Deinlein, Carolin Schweimer, Peer-Hendrik Kuhn, Stefan F. Lichtenthaler, Elisa Motori, Silvana Hrelia, Wolfgang Wurst, Dietrich Trümbach, Thomas Langer, Daniel Krappmann, Gunnar Dittmar, Jörg Tatzelt and Konstanze F. Winklhofer
Molecular Cell 7. März 2013 (online 28. Februar 2013)

Ansprechpartnerin:
PD Dr. Konstanze F. Winklhofer
E-Mail: konstanze.winklhofer@med.uni-muenchen.de
Web: www.biochemie.abi.med.uni-muenchen.de/winklhofer/index.html

Luise Dirscherl | idw
Weitere Informationen:
http://www.med.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Modernste Diagnostik eröffnet neue Perspektiven für eine "personalisierte“ Medizin
14.08.2018 | Universitätsklinikum Magdeburg

nachricht Ist Salz besser als sein Ruf?
10.08.2018 | Universitätsspital Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

14.08.2018 | Informationstechnologie

Der ängstliche Nao - Wenn Menschen emotional auf Roboter reagieren

14.08.2018 | Gesellschaftswissenschaften

Gebirge in Bewegung

14.08.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics