Neue Therapieansätze bei RET-Fusion – Zwei neue Inhibitoren gegen Treibermutation

Prof. Dr. Martin Sos Uniklinik Köln

Die Personalisierte Krebsmedizin, bei der die Therapie einer Erkrankung gezielt auf den einzelnen Patienten ausgerichtet wird, bekommt eine immer größere Bedeutung in der Krebstherapie. Durch molekularbiologische Diagnostik können sogenannte Treibermutationen, die das Wachstum eines Tumors antreiben, identifiziert werden. Die Entwicklung von Medikamenten, die gezielt solche Treibermutationen inhibieren und so das Tumorwachstum hemmen, ist ein Hauptziel der modernen Krebsmedizin.

RET ist ein Gen, das in vielen verschiedenen Tumorarten, wie zum Beispiel Lungenkrebs, häufig verändert vorliegt. Strukturelle Veränderungen führen zum Beispiel zu Fusionen des von RET kodierten Kinase-Proteins mit anderen Proteinen. RET-Fusionen sind ein vielversprechendes Ziel für Präzisionsmedikamente, da sie nur in Krebszellen, aber nicht in benachbarten gesunden Zellen vorkommen. Jedoch zeigen alle bislang entwickelten RET-Kinase-Inhibitoren nur eine sehr limitierte Wirkung in Patienten.

Um die Gründe für die begrenzte Wirksamkeit besser zu verstehen und die Identifizierung von verbesserten Inhibitoren zu ermöglichen, haben Forscher des Institutes für Pathologie und der Abteilung für Translationale Genomik an der Uniklinik Köln in der Arbeitsgruppe von Prof. Dr. Martin Sos verschiedene RET-Fusionen zellulär und strukturell charakterisiert. Dabei identifizierten die Wissenschaftler zwei Inhibitoren, die sehr effizient gegen Tumorzellen mit RET-Fusionen wirken.

In Zusammenarbeit mit externen Kooperationspartnern in Köln (Prof. Dr. Roman Thomas), Luzern (Prof. Dr. Oliver Gautschi), an der TU Dortmund (Prof. Dr. Stefan M. Kast) und dem Leibniz-Institut für Analytische Wissenschaften – ISAS – e. V. in Dortmund (Dr. René Zahedi) sowie weiteren internationalen Partnern konnten sie die molekularen Ursachen, die für die starke Aktivität dieser Wirkstoffe verantwortlich sind, näher beleuchten.

Mit Hilfe effizienter Computermodelle und proteomischen Analysen entdeckten sie zudem zwei mögliche Mechanismen, die zu einer Resistenz der Tumorzellen gegenüber den Inhibitoren führen können.
Die Erkenntnisse aus dieser Studie, die zelluläre Phänomene mit molekularen Eigenschaften verbindet, bilden eine wichtige Grundlage für die Entwicklung neuer, verbesserter Therapieformen gegen Tumore, die RET-Fusionen aufweisen.

Originalpublikation:
Plenker D, Riedel M, Brägelmann J, Dammert MA, Chauhan R, Knowles PP, Lorenz C, Keul M, Bührmann M, Pagel O, Tischler V, Scheel AH, Schütte D, Song Y, Stark J, Mrugalla F, Alber Y, Richters A, Engel J, Leenders F, Heuckmann JM, Wolf J, Diebold J, Pall G, Peifer M, Aerts M, Gevaert K, Zahedi RP, Buettner R, Shokat KM, McDonald NQ, Kast SM, Gautschi O, Thomas RK, Sos ML (2017). Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors. Sci Transl Med, 2017 Jun 14;9(394). pii: eaah6144. doi: 10.1126/scitranslmed.aah6144.

Für Rückfragen:
Christoph Wanko
Referent Unternehmenskommunikation Uniklinik Köln
Stabsabteilung Unternehmenskommunikation und Marketing
Telefon: 0221 478-5548
E-Mail: presse@uk-koeln.de

Media Contact

Christoph Wanko idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uk-koeln.de/

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer