Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multiple Sklerose: Cholesterin-Kristalle verhindern Reparatur im Zentralnervensystem

05.01.2018

Multiple Sklerose (MS) ist eine chronisch-entzündliche Erkrankung des Zentralnervensystems, bei der Immunzellen fettreiche Myelinscheiden der Nervenfasern abbauen. Der Wiederaufbau intakter Myelinscheiden ist notwendig, damit sich Patienten von ihren Behinderungen erholen. Aber das Regenerationsvermögen nimmt mit dem Alter ab. In „Science“ liefert ein Team der Technischen Universität München eine mögliche Erklärung: Fettmoleküle aus der Myelinscheide, die nicht rasch aus Fresszellen abtransportiert werden, können chronische Entzündungen auslösen. Dies verhindert den Wiederaufbau der Myelinhüllen. Zudem beschreibt das Team Zellen, die nur dann erscheinen, wenn eine Myelinscheide entsteht.

Für die Funktion des Zentralnervensystems spielt die Myelinscheide eine entscheidende Rolle. Es handelt sich um eine spezielle, besonders fettreiche Membran, die Nervenfasern so isoliert, dass elektrische Signale schnell und effizient weitergeleitet werden.


Prof. Mikael Simons erforscht mit seinem Team den Auf- und Abbau von Myelinhüllen, die Nervenfasern umgeben und bei der Multiplen Sklerose zerstört werden.

A. Eckert / TUM

Wird diese Hülle beschädigt, kann es zu Ausfallerscheinungen wie Lähmungen kommen. Bei MS kommt es im Laufe der Erkrankung an vielen verschiedenen Stellen im Gehirn oder Rückenmark durch körpereigene Immunzellen zu einer Zerstörung der Myelinscheide. Die Regeneration der Myelinscheide ist bei MS grundsätzlich möglich, aber in den meisten Fällen unzureichend.

Einer der Gründe dafür sind vermutlich chronische Entzündungen, die an den beschädigten Stellen entstehen. Das Team um Mikael Simons, Professor für Molekulare Neurobiologie an der TUM, hat herausgefunden, dass nach der Zerstörung der Myelinscheide kristallines Cholesterin – ähnlich wie bei der Arteriosklerose – eine anhaltende Entzündung auslöst, die eine Regeneration verhindert.

Gefährliche Kristalle

„Myelin hat einen sehr hohen Anteil an Cholesterin“, erläutert Prof. Simons. „Wenn Myelin zerstört wird, muss das Cholesterin, das dabei freigesetzt wird, aus dem Gewebe beseitigt werden.“ Diese Aufgabe erledigen Fresszellen, oder auch Mikroglia und Makrophagen genannt. Sie nehmen die beschädigte Myelinscheide in das Innere der Zelle auf, verdauen diese und befördern die unverdaulichen Reste über Transportmoleküle wieder aus der Zelle heraus.

Häuft sich jedoch in kurzer Zeit zu viel Cholesterin in der Zelle an, kann es passieren, dass Kristalle gebildet werden. Anhand eines Mausmodells konnten Simons und sein Team die verheerenden Folgen des kristallinen Cholesterins zeigen: Es aktiviert in den Fresszellen ein sogenanntes Inflammasom, dass unter anderem dafür sorgt, dass Entzündungsmediatoren freigesetzt und mehr Immunzellen angelockt werden. „Ganz ähnliche Probleme treten auch bei Arteriosklerose auf, nur eben nicht im Gehirngewebe, sondern in den Blutgefäßen“, sagt Simons.

Wie gut die Mikroglia und Makrophagen ihre Aufgabe erfüllten, hing nicht zuletzt vom Alter der Versuchstiere ab: Je älter diese waren, desto schlechter funktionierte der Abtransport von Cholesterin und desto stärker waren die chronischen Entzündungen. „Wenn wir die Tiere mit einem Medikament behandelten, das den Abtransport von Cholesterin fördert, gingen die Entzündungen zurück und die Myelinscheiden wurden regeneriert“, sagt Mikael Simons. Als nächstes möchten er und sein Team untersuchen, ob dieser Mechanismus sich für Therapien von MS-Patienten nutzen lässt, um die Regeneration zu fördern.

Neu entdeckte Zellen zeigen Reparatur an

Eine entscheidende Voraussetzung für die Entwicklung von Therapien zur Förderung der Reparatur ist ein besseres Verständnis der Myelinbildung. Eine weitere Studie unter der Leitung von Prof. Simons und Prof. Christine Stadelmann vom Institut für Neuropathologie der Universität Göttingen, die kürzlich in „Science Translational Medicine“ erschienen ist, liefert dazu wichtige neue Erkenntnisse. Die Wissenschaftlerinnen und Wissenschaftler entdeckten einen neuen Zelltyp, eine besondere Form der sogenannten Oligodendrozyten. Sie gehören zu den Gliazellen im Gehirn, die für die Myelinisierung verantwortlich sind.

„Wir nehmen an, dass die von uns entdeckten BCAS1-positiven Oligodendrozyten eine Zwischenstufe in der Entwicklung dieser Zellen darstellen. Sie sind nur relativ kurze Zeit nachweisbar – nämlich dann, wenn gerade Myelin gebildet wird“, sagt Mikael Simons. In menschlichen Gehirnen sind sie beispielsweise besonders stark in Neugeborenen nachweisbar, wenn die Myelinisierung besonders ausgeprägt ist. Bei Erwachsenen verschwinden diese Zellen zum Großteil, können aber neu gebildet werden, wenn die Myelinscheide beschädigt wird und neuaufgebaut werden muss.

„Wir hoffen, dass die BCAS-1 positiven Zellen uns bei der Suche nach neuen Medikamenten zur Regeneration von Myelin helfen können“, sagt Prof. Simons. So könnte man jetzt gezielt nach Substanzen suchen, die die Bildung dieser Zellen anregen. Darüber hinaus könnte man sie nutzen, um noch genauer zu verstehen, wann im Laufe des Lebens eines Menschen an welchen Stellen Myelinscheiden neu gebildet werden.

Die beiden Forschungsprojekte entstanden in enger Zusammenarbeit mit Wissenschaftlerinnen und Wissenschaftlern am Max-Planck-Institut für Experimentelle Medizin in Göttingen. Prof. Simons ist zudem Mitglied im Exzellenzcluster SyNergy und am Forschungszentrum für neurodegenerative Erkrankungen (DZNE) angestellt.

Publikationen:

L. Cantuti-Castelvetri, D. Fitzner, M. Bosch-Queralt, M.-T. Weil, M. Su, P. Sen, T. Ruhwedel, M. Mitkovski, G. Trendelenburg, D. Latjohan, W. Moebius, M. Simons: Defective cholesterol clearance limits remyelination in the aged central nervous system, Science (2018). DOI: 10.1126/science.aan4183

M. K. Fard, F. van der Meer, P. Sanchez, L. Cantuti-Castelvetri, S. Mandad, S. Jaekel, E. F. Fornasiero, S. Schmitt, M. Ehrlich, L. Starost, T. Kuhlmann, C. Sergiou, V.Schultz, C. Wrzos, W. Brueck, H. Urlaub, L. Dimou, C. Stadelmann, M. Simons: BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions, Science Translational Medicine (2017). DOI: 10.1126/scitranslmed.aam7816

Kontakt:
Prof. Dr. Mikael Simons
Technische Universität München
Lehrstuhl für Molekulare Neurobiologie
Tel: +49-(0)89 440046495
msimons@gwdg.de

Weitere Informationen:

http://www.neuroscience.med.tum.de/index.php?id=5 Lehrstuhl-Website
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34392/ Artikel

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Mit körpereigenem Protein Herpes bekämpfen
13.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Mit Lichtimpulsen Herzzellen abschalten
06.11.2018 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics