Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekül gegen HIV: kleine Änderung, große Wirkung

09.08.2012
Im Kampf gegen AIDS haben Wissenschaftler einen neuen viel versprechenden Therapieansatz gefunden – mit denkbar einfachen Mitteln.

Obwohl sie die Form eines bereits bekannten synthetischen Anti-HIV-Moleküls nur leicht veränderten, erzielten sie eine große Wirkung: Das neue Mini-Protein dockt besser an CXCR4-Rezeptoren auf der Oberfläche von Immunzellen an, einem bevorzugten Angriffspunkt für häufig vorkommende HIV-Varianten.


Perfekte Passform: Das abgewandelte anti-HIV-Molekül (Mitte) bindet mit hoher Affinität an den CXCR4-Rezeptor auf der Oberfläche von Immunzellen.

Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, genehmigte Veröffentlichung

Damit ist dem Aids-Erreger der Eintritt in die Zellen verwehrt, die Viren können sich nicht weiter im Organismus ausbreiten. Diese Resultate wurden kürzlich in der internationalen Ausgabe des Fachmagazins „Angewandte Chemie“ veröffentlicht.

Die unterschiedlichen Erreger des HIV-1-Virenstammes verschaffen sich Zugang zu den Immunzellen, indem sie an die Zell-Rezeptoren CCR5 oder CXCR4 andocken. An diese Bindungsstellen heften sich üblicherweise körpereigene Botenstoffe, so genannte Chemokine. Während es bereits ein CCR5-spezifisches HIV-Medikament gibt, ist für CXCR4 bisher kein Arzneimittel zugelassen. Da das neue, ringförmige Peptid – ein Mini-Protein – den CXCR4-Rezeptor für das Virus blockiert, könnte es sich als ein interessanter Wirkstoff-Kandidat gegen HIV und AIDS erweisen.

Das Forschungsprojekt wurde von Wissenschaftlern vom Lehrstuhl für Pharmazeutische Radiochemie und am Institute for Advanced Study der TUM initiiert und gemeinsam mit Molekularbiologen der Universität Neapel und Virologen des Helmholtz Zentrum München durchgeführt. Die TUM-Wissenschaftler um Prof. Dr. Hans-Jürgen Wester und Prof. Dr. Dr. h.c. Horst Kessler hatten ursprünglich an einem neuen Bildgebungs-Verfahren für Tumore gearbeitet. Dafür nutzten sie ringförmige Proteinschnipsel, die sie veränderten, um ihre spezifische Bindung an den CXCR4-Rezeptor zu erhöhen. Dabei erkannten sie, dass diese Methode auch ein enormes Potenzial für die Arzneimittelforschung birgt.

Die Wissenschaftler bauten das Peptid mit einem einfachen Trick um: Sie verschoben eine Aminosäuren-Seitenkette von Kohlenstoff zu einem benachbarten Stickstoff-Atom. So veränderten sie die Grundstruktur des Moleküls zwar nur geringfügig – seine biologischen Eigenschaften dafür umso mehr: Die Bindungsgruppen des Peptids befinden sich jetzt in einer optimalen Stellung, um an den CXCR4-Rezeptor anzudocken. Damit bindet das Peptid 400- bis 1.500-mal besser an CXCR4 als bisher bekannte andere Verbindungen, die derzeit als Wirkstoffe getestet werden.

Zudem weist das künstliche Peptid Merkmale auf, die seinen Einsatz im Organismus begünstigen. Sein besonderer chemischer Aufbau schützt das ringförmige Molekül vor der Zerstörung durch körpereigene Enzyme. Da CXCR4-Rezeptoren auch eine wichtige Rolle bei der Entstehung von Krebsmetastasen spielen, benutzen die Münchner Forscher eine abgewandelte Form dieses Moleküls bereits für die Bildgebung von Tumoren.

„Wir freuen uns, dass wir mit unserem neues Peptid-Design einen Wirkstoff entwickelt haben, den wir für die Therapie lebensbedrohender Krankheiten anwenden können“, sagt Prof. Horst Kessler, ein Senior Fellow im TUM Institute for Advanced Study und „Emeritus of Excellence“ in der Fakultät für Chemie. „Das Molekül könnte eine wirksame Waffe gegen besonders aggressive HIV-1-Stämme sein. Diese Viren finden wir häufig bei Patienten, die seit langer Zeit HIV-infiziert sind“, ergänzt Prof. Ruth Brack-Werner, Virologin am Helmholtz Zentrum München. „Verbindungen dieser Art bieten ungeahnte Möglichkeiten für die Entwicklung neuer Medikamente“, erklärt Prof. Hans-Jürgen Wester, Leiter des Lehrstuhls für Pharmazeutische Radiochemie. „Wir warten daher mit großer Spannung auf die ersten präklinischen und klinischen Tests.“

Die Forschungsarbeit wurde von der Exzellenzinitiative des Bundes und der Länder (TUM-IAS, Center of Integrated Protein Research Munich), der Deutschen Forschungsgemeinschaft (DFG SFB 824, Unterprojekt B5) und dem Helmholtz Zentrum München unterstützt.

Originalpublikation:
A Conformationally Frozen Peptoid Boosts CXCR4 Affinity and Anti-HIV Activity. Oliver Demmer, Andreas O. Frank, Franz Hagn, Margret Schottelius, Luciana Marinelli, Sandro Cosconati, Ruth Brack-Werner, Stephan Kremb, Hans-Jürgen Wester, and Horst Kessler. Angewandte Chemie Int. Ed. 2012, 51, 8110-8113, DOI: 10.1002/anie.201202090

Kontakt:
Prof. Dr. Horst Kessler
TUM Institute for Advanced Study / Fakultät für Chemie
Technische Universität München
Lichtenbergstr. 4
85747 Garching, Germany
Tel.: +49 89 289-13300
Fax.: +49 89 289-13210
E-Mail: kessler@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.org.chemie.tu-muenchen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom
01.04.2020 | Universitätsklinikum Würzburg

nachricht Pool-Testen von SARS-CoV-2 Proben erhöht die Testkapazität weltweit um ein Vielfaches
31.03.2020 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics