Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Simulationen gegen den Knochenschwund

11.09.2019

Forschungsteam der TH Nürnberg simuliert Knochenumbauprozesse für Präventions- und Therapiemaßnahmen

Egal, ob im Wachstum oder bei einer altersbedingten Rückbildung, unsere Knochen befinden sich in einem ständigen Auf- und Abbau. Wie diese Prozesse funktionieren und welche Parameter darauf einen Einfluss haben, untersucht Prof. Dr.-Ing. Areti Papastavrou von der Fakultät Maschinenbau und Versorgungstechnik der TH Nürnberg in ihrem Forschungsprojekt „OSTEO-MODEL“.


Simulierte Dichteverteilung

Areti Papastavrou / TH Nürnberg

Ihr Ziel ist es, Vorsorgeuntersuchungen und Therapien gegen Krankheiten wie Osteoporose zu verbessern. Unterstützt wird sie dabei unter anderem von Expertinnen und Experten des Klinikums Nürnberg. Die STAEDTLER Stiftung fördert dieses innovative Projekt mit 40.000 Euro.

Knochen sind ein lebendes Material und befinden sich in einem ständigen Auf- und Abbau. Osteoporose, besser bekannt als „Knochenschwund“, ist gerade bei älteren Menschen eine häufige Erkrankung. Das Bayerische Staatsministerium für Gesundheit und Pflege geht davon aus, dass rund 700.000 Menschen allein in Bayern davon betroffen sind. In einer immer älter werdenden Gesellschaft kommt medizintechnischen Entwicklungen eine immer größere Bedeutung zu, Präventionsmaßnahmen und Therapiemöglichkeiten müssen stetig verbessert werden.

Prof. Dr.-Ing. Areti Papastavrou von der Fakultät Maschinenbau und Versorgungstechnik der TH Nürnberg leistet mit ihrem Forschungsprojekt „OSTEO-MODEL“ einen wichtigen Beitrag dazu. Ihr Ziel ist es, wesentliche Prozesse des Knochenumbaus zu simulieren und daraus mögliche Therapieansätze abzuleiten. Mit Hilfe der Finite-Elemente-Methode (FEM) modellieren sie und ihr Forschungsteam das Wachstum und die Degeneration von Knochen.

Die Finite-Elemente-Methode ermöglicht eine rechnerische Simulation und wird normalerweise bei Bauwerken oder anderen Konstruktionen eingesetzt, um deren Verhalten, beispielsweise bei starkem Wind, vorauszubestimmen. Das Forschungsteam um Prof. Dr.-Ing. Areti Papastavrou setzt die Methode ein, um die Veränderungen der Knochenstruktur zu bestimmen.

„Bei unseren Simulationen können wir unterschiedliche Randbedingungen mitberücksichtigen, wie die mechanische Beanspruchung des Knochens durch Bewegung und Belastung. Auch Aspekte der Ernährung, die den Stoffwechsel des Knochens über Vitamine oder Hormone beeinflussen, können wir in unsere Berechnungen einfließen lassen“, so Prof. Dr.-Ing. Areti Papastavrou.

Ausgangspunkt für die Simulationen sind anonymisierte Bilddaten von Knochen betroffener Patientinnen und Patienten, die mittels Computertomografie (CT) aufgenommen wurden. Diese lassen Rückschlüsse auf die Knochenmasse und Schädigungen wie Mikrorisse zu. Mit diesen Daten berechnet das Forschungsteam die Festigkeit des Knochens im FE-Modell. Zudem kann das Team eine Einschätzung abgeben, an welcher Stelle der Knochen am wahrscheinlichsten unter einer bestimmten Belastung, wie Springen oder Fallen, brechen wird.

Für das Simulationsmodell greift die Forschungsgruppe auf bestehende Vorarbeiten zurück und erweitert diese um Aspekte des Knochenstoffwechsels und Hormonhaushalts. Außerdem können sie Modelle für weiche biologische Gewebe auf die Knochen anpassen und übertragen. Das so entstandene, neue Simulationsmodell haben die Wissenschaftlerinnen und Wissenschaftler mit etablierten Verfahren und mit realen klinischen Befunden verglichen – es liefert dabei sehr gute Ergebnisse.

Knochen besitzen die Fähigkeit, sich durch Aufbauprozesse an mechanische Belastungen anzupassen, ähnlich wie der Muskelaufbau beim Training. Ein möglichst realitätsnahes Modell des Knochenwachstums kann demnach Therapien ergänzen, um diese individuell und zielgerichtet zu gestalten. Bestimmte Trainingsübungen zur Stimulierung können dabei helfen, Verletzungen vorzubeugen, beispielsweise Knochenbrüche bei Osteopathie-Patienten.

In dem Projekt arbeitet das Forschungsteam eng mit dem Klinikum Nürnberg und der Friedrich-Alexander-Universität Erlangen-Nürnberg zusammen sowie mit internationalen Expertinnen und Experten auf dem Gebiet der Orthopädie, der Kontinuumsmechanik und der Biomechanik.
Die STAEDTLER Stiftung fördert erfreulicherweise das Projekt mit 40.000 Euro.

Hinweis für Redaktionen:
Kontakt:
Hochschulkommunikation, Tel. 0911/5880-4101, E-Mail: presse@th-nuernberg.de

Jasmin Bauer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.th-nuernberg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Fettsäuremangel an Serotoninrezeptoren kann Depressionen auslösen
11.09.2019 | Medizinische Hochschule Hannover

nachricht Dem Geheimnis der Gallensteine auf der Spur
10.09.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nadel im Heuhaufen gefunden - bahnbrechende Entdeckung zu Immunzellen die geschädigtes Gewebe nach Herzinfarkt heilen

Würzburger Gustavo Ramos entdeckt mit seiner Juniorforschungsgruppe am Deutschen Zentrum für Herzinsuffizienz das Protein, das für die Bildung der heilungsfördernden T-Zellen nach einem Herzinfarkt verantwortlich ist. Darüber hinaus hat er hat den Ort lokalisiert, an dem die T-Zellen gebildet werden, in den mediastinalen Lymphknoten. Von dort aus wandern sie ins Herz, wo sie die frühe Heilung des geschädigten Herzmuskelgewebes unterstützen. Eine Verbindung zwischen der Größe des Infarkts, der Größe der Lymphknoten, der Menge der T-Zellen und der Regeneration des Herzens konnte ebenfalls gezeigt werden: Je schwerer der Infarkt, desto größer die Lymphknoten und desto besser die Heilung.

Lange hat er danach gesucht, jetzt hat er es gefunden: Den Teil des Proteins, der für die Bildung der T-Zellen verantwortlich ist, die als Helferzellen des...

Im Focus: Weltrekord für Perowskit-CIGS-Tandem-Solarzelle

Ein Team um Prof. Steve Albrecht aus dem HZB stellt auf der weltgrößten internationalen Fachkonferenz EU PVSEC in Marseille am 11. September 2019 einen neuen Weltrekord für eine Tandem-Solarzelle vor. Die Solarzelle kombiniert die Halbleitermaterialien Perowskit und CIGS und erreicht damit einen zertifizierten Wirkungsgrad von 23,26 Prozent. Ein Grund für diesen Erfolg liegt in einer Zwischenschicht aus organischen Molekülen, die sich selbstorganisiert so anordnen, dass auch raue Halbleiter-Oberflächen lückenlos bedeckt werden. Dafür wurden zwei Patente eingereicht.

Perowskit-basierte Solarzellen haben in den letzten zehn Jahren unglaublich rasche Steigerungen des Wirkungsgrades gezeigt. Die Kombination von Perowskiten mit...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

Im Focus: Stuttgarter Physiker weisen erstmals zweifelsfrei einen Suprafestkörper nach

Suprafestkörper (im englischen supersolids) beschreiben einen Aggregatszustand, den man vereinfacht als fest und flüssig zugleich beschreiben kann. Um den Nachweis dieser exotischen Quantenmaterie ist in den vergangenen Jahren ein regelrechter Wettbewerb entbrannt. Einem Team um Prof. Tilman Pfau und Tim Langen am 5. Physikalischen Institut der Universität Stuttgart gelang nun erstmals der experimentelle Nachweis, dass der lange vorhergesagte, suprasolide Zustand der Materie tatsächlich existiert. Die Forscher beschreiben ihre Ergebnisse im Magazin Nature.

Im Alltag kennt man drei Aggregatszustände von Materie - fest, flüssig und gasförmig. Kühlt man Materie extrem ab, entstehen auch andere Aggregatzustände wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neutrino-Waage KATRIN mit ersten Ergebnissen

09.09.2019 | Veranstaltungen

Society 5.0: Der Mensch im Zentrum der Digitalisierung

05.09.2019 | Veranstaltungen

Wald unter Druck – Brennpunkte und Lösungswege

05.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit Simulationen gegen den Knochenschwund

11.09.2019 | Medizin Gesundheit

Innovative Methoden für nicht-glatte Probleme

11.09.2019 | Physik Astronomie

Innovationspreis für effizientere und langlebigere Wasserstoff-Elektrolysezellen

11.09.2019 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics