Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018

Wissenschaftler der Universitätsmedizin Mainz und des Max-Planck-Instituts für Polymerforschung (MPI-P) haben eine neue Methode entwickelt, um kleinste mit Medikamenten gefüllte Nanocarrier an Immunzellen andocken zu lassen, die dann wiederum Tumore angreifen. Dies verspricht in Zukunft eine zielgenaue Behandlung, die eine Schädigung von gesundem Gewebe weitestgehend vermeiden kann. Ihre Untersuchungen haben die Wissenschaftler nun in dem renommierten Fachjournal „Nature Nanotechnology“ veröffentlicht. Einblicke in die Funktionsweise der Nanocarrier erhalten Sie hier: https://www.youtube.com/watch?v=ZFVnBBWhCro&feature=youtu.be

Zur Behandlung von Tumoren oder auch für die Schmerztherapie werden in der modernen Medizin häufig Medikamente verabreicht, die sich im gesamten Körper verteilen, obwohl der medizinisch zu behandelnde Organteil nur klein und abgegrenzt ist. Abhilfe verspricht ein zielgerichteter Transport von Medikamenten zu bestimmten Zelltypen. Vor diesem Hintergrund arbeiten Wissenschaftler an der Entwicklung sogenannter Nanocarrier:


Bringt man eine winzige Medikamentenkapsel – einen Nanocarrier – mit Antikörpern unter sauren Bedingungen zusammen, so kommt es zu einer stabilen Anlagerung des Antikörpers an den Medikamententräger

Volker Mailänder (Universitätsmedizin Mainz)

Dabei handelt es sich quasi um Miniatur-U-Boote mit einer Größe von ungefähr einem Tausendstel des Durchmessers eines menschlichen Haares. Diese mit dem bloßen Auge nicht erkennbaren Nanocarrier werden mit einem medizinischen Wirkstoff befüllt und dienen somit als konzentrierte Transportbehälter.

Die Oberfläche dieser Nanocarrier beziehungsweise Medikamentenkapseln gilt es so zu beschichten, dass sie beispielsweise an mit Krebszellen durchsetztem Gewebe andocken können. Für die Beschichtung werden meist Antikörper verwendet, die wie ein Adressaufkleber an den zu adressierenden Zellen – wie etwa Tumorzellen oder Immunzellen, die Tumore angreifen – eine Bindestelle vorfinden.

Das Team um Prof. Dr. Volker Mailänder von der Hautklinik der Universitätsmedizin der Johannes Gutenberg-Universität Mainz (JGU) hat nun eine neue Methode entwickelt, die Antikörper mit der Medikamentenkapsel auf eine genial einfache Weise zu verbinden: „Bisher mussten diese Antikörper aufwendig mit chemischen Methoden an die Nanokapseln gebunden werden“, so Mailänder. „Wir haben nun nachgewiesen, dass es ausreicht, Antikörper und Nanokapsel in einer angesäuerten Lösung zusammenzuführen.“

Die Forscherinnen und Forscher heben in ihrer Veröffentlichung im Fachjournal „Nature Nanotechnology“ hervor, dass die Verbindung von Nanokapsel und Antikörper auf diese Art und Weise etwa doppelt so effizient im Reagenzglas funktioniert – und damit auch der zielgerichtete Medikamententransport entscheidend verbessert werden kann. Unter Bedingungen, wie sie im Blut vorherrschen, verlor zudem der chemisch gekoppelte Antikörper fast vollständig seine Wirksamkeit, während der nicht-chemisch aufgebrachte Antikörper weiterhin funktional blieb.

„Die bisher übliche Anbindung über komplexe chemische Verfahren kann dazu führen, dass der Antikörper verändert oder gar zerstört wird beziehungsweise der Nanocarrier im Blut schnell mit Proteinen zugesetzt wird“, so Prof. Dr. Katharina Landfester vom Max-Planck-Institut für Polymerforschung. Die neue Methode, die auf dem physikalischen Effekt der sogenannten Adsorption oder „Anhaftung“ basiert, schützt den Antikörper. Hierdurch wird der Nanocarrier stabiler und kann somit effektiver die Medikamente im Körper verteilen.

Die Forscher haben zur Entwicklung ihrer neuen Methode Antikörper und Medikamententransporter in einer sauren Lösung zusammengebracht. Dies führt – im Gegensatz zu einer Verbindung bei einem neutralen pH-Wert – zu einer effizienteren Besetzung der Nanopartikel-Oberfläche. Laut den Forschern bleibt auf dem Nanocarrier somit weniger Platz für Blutproteine, die das Andocken an eine Zielzelle verhindern könnten.

Insgesamt sind sich die Forscher sicher, dass die neu entwickelte Methode Effizienz und Anwendbarkeit von auf Nanotechnologie basierende Therapieverfahren in Zukunft erleichtern und verbessern wird.

Über das Projekt:
Dieses Projekt wird durch den Sonderforschungsbereich SFB 1066 “Nanodimensional polymer therapeutics for tumor therapy” der Deutschen Forschungsgemeinschaft (DFG) und durch das Forschungszentrum Immuntherapie (FZI) der Johannes Gutenberg-Universität Mainz finanziert.
Originalveröffentlichung: „Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona“, DOI: http://dx.doi.org/10.1038/s41565-018-0171-6; https://www.nature.com/articles/s41565-018-0171-6

Bildunterzeile: Bringt man eine winzige Medikamentenkapsel – einen Nanocarrier – mit Antikörpern unter sauren Bedingungen zusammen, so kommt es zu einer stabilen Anlagerung des Antikörpers an den Medikamententräger. Dies ermöglicht es, einen Nanocarrier gezielt an erkranktes Gewebe zu führen.
Verwendung der Grafik kostenfrei unter Angabe der Bildquelle: Volker Mailänder

Ansprechpartner
Prof. Dr. Volker Mailänder
Hautklinik und Poliklinik
Universitätsmedizin Mainz
Telefon +49.6131 17-0
E-Mail: Volker.mailaender@unimedizin-mainz.de

Pressekontakt
Oliver Kreft, Unternehmenskommunikation Universitätsmedizin Mainz,
Telefon +49 6131 17-7424, Fax +49 6131 17-3496, E-Mail: pr@unimedizin-mainz.de

Max-Planck-Institut für Polymerforschung
Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerforschung. Durch die Fokussierung auf weiche Materie und makromolekulare Materialien ist das MPI-P mit seiner Forschungsausrichtung weltweit einzigartig. Seine Aufgabe ist es, neue Polymere herzustellen und zu charakterisieren. Zum Aufgabengebiet gehört auch die Untersuchung ihrer physikalischen und chemischen Eigenschaften. Das MPI-P wurde 1984 gegründet. Es beschäftigt mehr als 500 Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland, von denen die große Mehrzahl mit Forschungsaufgaben befasst ist.

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.400 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.800 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Oliver Kreft | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Zwei Städte, ein Operationstisch
17.10.2018 | Otto-von-Guericke-Universität Magdeburg

nachricht Antiblockiersystem in Arterien schützt vor Herzinfarkt
16.10.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Entzündungsprozesse beeinträchtigen Nervenregeneration im Alter

19.10.2018 | Biowissenschaften Chemie

Auf dem Weg zu maßgeschneiderten Naturstoffen

19.10.2018 | Biowissenschaften Chemie

Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung

19.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics