Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Luft knapp wird im Tumor...

01.12.2008
Solide Tumoren zeichnen sich durch eine Unterversorgung mit Sauerstoff aus. Im Vergleich zu gesundem Gewebe scheint diese Sauerstoffmangelsituation (Hypoxie) den Tumorzellen aber sehr gut zu bekommen.

Durch die Hypoxie im Tumor werden Gene verstärkt aktiviert, die das weitere Tumorwachstum sowie die Metastasierung des Tumors fördern können durch das Hereinwachsen von neuen Gefäßen.

Mittlerweile sind die molekularen Abläufe für diese Vorgänge recht gut untersucht. Im Mittelpunkt des Geschehens steht ein Genaktivator (Transkriptionsfaktor), der als Hypoxie-induzierbarer Faktor (HIF)-1 bezeichnet wird. Das HIF-1a Protein wird unter hypoxischen Bedingungen stabilisiert und aktiviert, während die Zufuhr von Sauerstoff diesen Prozess unterbinden kann.

Beteiligt an der Sauerstoff-abhängigen HIF-1a Proteindestabilisierung sind sogenannte Prolylhydroxylase Enzyme (PHDs), die als zelluläre Sauerstoffsensoren angesehen werden können. Da es bisher im Tumorgewebe nicht gelungen ist, die Stabilisierung von HIF-1a direkt zu unterbinden, stellen die PHD Enzyme attraktive Zielmoleküle dar, um die Anpassung des Tumors an Hypoxie zu beeinflussen.

Zunächst muss allerdings der Einfluss der PHDs auf das Tumorwachstum bzw. auf das Ansprechen von Tumoren auf Chemotherapie besser verstanden werden. Wenn der Transkriptionsfaktor HIF-1 nicht das einzige von den PHD Enzymen abzubauende Molekül wäre, könnte eine Manipulation ihrer Aktivität ansonsten ineffektiv sein oder im schlimmsten Fall sogar ungewollte Folgen haben. Daher wird in der Abteilung von Frau Prof. Katschinski, Universitätsmedizin Göttingen, der Einfluss der PHD Enzyme auf das Tumorwachstum und das Ansprechen der Tumore auf Chemotherapie untersucht. Dazu hat die Arbeitsgruppe Zelllinien hergestellt, die genetisch so verändert sind, dass die Proteinmenge der PHD Enzyme gezielt gesenkt werden kann.

In diesen Zellen konnten bereits Veränderungen in der Proteinausstattung beobachtet werden, die Tumorzellen die Zellwanderung, das Ablösen vom Tumorzellverband bzw. eine Resistenz gegenüber häufig verwendeten chemotherapeutischen Substanzen ermöglichen. Diese Vorgänge sind an der Tumormetastasierung und Therapieresistenz beteiligt. Die etablierten Zellmodelle werden in laufenden Untersuchungen genutzt, um das Tumorwachstum in Abhängigkeit von der PHD Proteinmenge zu beobachten.

Die entstehenden Tumore werden in Kooperation mit Frau Prof. Dr. F. Alves (Max Planck Institut für experimentelle Medizin und Abteilung Hämatologie und Onkologie, Universitätsmedizin Göttingen) und Herrn Prof. Dr. E. Grabbe (Abteilung Diagnostische Radiologie, Universitätsmedizin Göttingen) regelmäßig hinsichtlich ihrer Größe und der in ihnen neu entstehenden Gefäße untersucht. Dazu werden aufwändige nicht invasive Bilddarstellungsmethoden (fpVCT und eXplore OptixTM) verwendet, die eine Darstellung der Tumorentwicklung sowie der Gefäße im lebenden Versuchtier mit präziser Auflösung über die Zeit ermöglichen.

Kontakt: Prof. Dr. D. M. Katschinski, Universitätsmedizin Göttingen, Abteilung Herz- Kreislauf-physiologie, Georg August Universität Göttingen

Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 180.000 €. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 160 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Bernhard Knappe | idw
Weitere Informationen:
http://www.sanst.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Erkenntnisse zur Schlaganfall-Rehabilitation: Entspannung besser als Laufbandtraining?
19.09.2019 | Universität Greifswald

nachricht Forscher entwickeln "Landkarte" für Krebswachstum
19.09.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics