Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wieder laufen nach Rückenmarksverletzung

01.06.2012
Einem ehemaligen Neurologen der Universität Zürich gelingt es, Ratten mit Rückenmarksverletzungen und schweren Lähmungen wieder zum Laufen zu bringen.

Er zeigt, dass ein durchtrennter Abschnitt des Rückenmarks reaktiviert werden kann, wenn dessen inhärente Intelligenz und Regenerationsfähigkeit «aufgeweckt» werden. Die vor fünf Jahren an der Universität Zürich begonnene Studie dürfte unser Verständnis des Zentralnervensystems tief greifend verändern. Das beobachtete Nervenwachstum lässt auf neue Methoden für die Behandlung von Lähmungen hoffen.

Die Studie von Grégoire Courtine, ehemaliger UZH-Neurologe und jetziger Professor für Rückenmarkwiederherstellung an der ETH Lausanne, belegt: Nach einigen Wochen Neurorehabilitation mit einer Kombination aus robotergesteuertem Laufgeschirr und elektrochemischer Stimulierung beginnen Ratten nicht nur aus eigenem Antrieb zu laufen, sondern können bei entsprechender Stimulierung schon bald rennen, Stufen hochklettern und Hindernissen ausweichen. Laut Courtine ist aber noch nicht klar, ob ähnliche Rehabilitationstechniken auch beim Menschen funktionieren würden.

Rückenmark aufwecken

Bekannt ist, dass Gehirn und Rückenmark sich nach kleineren Verletzungen anpassen und erholen können. Dieses Phänomen wird als Neuroplastizität bezeichnet. Nach schweren Verletzungen zeigte das Rückenmark jedoch bisher so wenig Plastizität, dass eine Regeneration unmöglich war. Die Arbeit von Grégoire Courtine dokumentiert nun, dass auch in solchen Fällen Plastizität und Erholung möglich sind, aber nur, wenn das «eingeschlafene» Rückenmark zuerst aufgeweckt wird.

Dazu spritzten er und sein Team Ratten eine chemische Lösung mit Monoamin-Agonisten. Diese Stoffe lösen eine Zellreaktion aus, indem sie an bestimmte Dopamin-, Adrenalin- und Serotoninrezeptoren der Rückenmarkneuronen andocken. Dieser Cocktail ersetzt die bei gesunden Menschen von den Hirnstammbahnen freigesetzten Neurotransmitter, regt die Neuronen an und bereitet sie darauf vor, zum richtigen Zeitpunkt Bewegungen des Unterkörpers zu koordinieren.

Fünf bis zehn Minuten nach der Injektion stimulierten die Wissenschaftler das Rückenmark elektrisch mithilfe von Elektroden, die in die äusserste Schicht des Rückenmarkkanals, den sogenannten Epiduralraum, implantiert worden waren. Diese beiden Stimulierungen – chemisch und elektrisch – sind erforderlich, um eine Gehbewegung auszulösen. «Die lokale Epiduralstimulierung sendet fortwährend elektrische Signale durch Nervenfasern an die chemisch angeregten Neuronen, die die Beinbewegungen steuern. Dann musste nur noch die Bewegung ausgelöst werden», erklärt Rubia van den Brand, Mitautorin der Studie.

Angeborene Intelligenz des Rückenmarks

Bereits 2009 berichtete Courtine, damals noch an der Universität Zürich, über die Wiederherstellung von – wenn auch nicht willensgesteuerten – Bewegungen. Er entdeckte, dass sich ein ab der Läsion vom Hirn abgetrenntes, stimuliertes Rückenmark einer Ratte überraschend entwickelte: Es übernahm nach und nach die Modulierung der Beinbewegungen, sodass vorher gelähmte Tiere auf einem Laufrad gehen konnten. Diese Experimente zeigten, dass das Laufrad eine sensorische Rückmeldung bewirkte, die eine Gehbewegung auslöste. Die angeborene Intelligenz des Rückenmarks übernahm diese Funktion, sodass das Gehen im Wesentlichen ohne Beitrag des Gehirns der Ratte erfolgte. Die Wissenschaftler waren überrascht und vermuteten, dass bereits ein sehr schwaches Hirnsignal ausreichen würde, damit die Tiere wieder willensgesteuerte Bewegungen vollführen können.

Um diese Theorie zu überprüfen, ersetzte Courtine das Laufrad durch einen Roboter, der die Ratten stützte und nur eingriff, wenn sie das Gleichgewicht verloren. Dadurch wurde den Nagern suggeriert, ihr Rückenmark sei gesund und funktionstüchtig. Sie wurden so ermutigt, willensgesteuert ans andere Ende der Plattform zu laufen, wo ein Stück Schokolade zur Belohnung auf sie wartete. «Dieses aus ihrer Sicht willensgesteuerte Training führte zu einer Vervierfachung der Nervenzellen im Gehirn und im Rückenmark. Dieses Nachwachsen beweist das riesige Neuroplastizitätspotenzial selbst nach schweren Verletzungen des Zentralnervensystems», sagt Janine Heutschi, Mitautorin der Studie.

Erste Rehabilitation beim Menschen am Horizont

Courtine bezeichnet dieses Nachwachsen als «neue Ontogenese», eine Art Wiederholung der Wachstumsphase eines Säuglings. Die Forscher stellten fest, dass die neu gebildeten Fasern die ursprüngliche Rückenmarksverletzung überbrückten und Signale aus dem Gehirn an das elektrochemisch angeregte Rückenmark weiterleiteten. Das Signal war stark genug, um eine Bewegung auf dem Boden ohne Laufrad auszulösen. Die Ratten begannen also, willensgesteuert in Richtung der Belohnung zu laufen, und trugen ihr gesamtes Gewicht ausschliesslich mit ihren Hinterbeinen.

Die spektakuläre Reaktion des Rattenrückenmarks auf die Behandlung legt theoretisch nahe, dass Menschen mit Rückenmarksverletzungen bald über neue Möglichkeiten verfügen werden. Courtine ist zuversichtlich, dass in ein bis zwei Jahren am Zentrum für Rückenmarksverletzungen an der Universitätsklinik Balgrist in Zürich Phase-II-Tests am Menschen beginnen können.

Literatur:
Rubia van den Brand, Janine Heutschi, Quentin Barraud, Jack DiGiovanna, Kay Bartholdi, Michèle Hürlimann, Lucia Friedli, Isabel Vollenweider, Eduardo Martin Moraud, Simone Duis, Nadia Dominici, Silvestro Micera, Pavel Musienko and Grégoire Courtine. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 31 May, 2012. doi: 10.1126/science.1217416

Für den Erhalt eines Exemplars der Arbeit senden Sie bitte eine Anfrage an scipak@aaas.org.

Multimedia:
Youtube-Video: http://youtu.be/ejwEqpV8ak4
Ressourcen (Videos und Bilder in hoher Auflösung): http://bit.ly/courtineEPFL
Video in Sendequalität: ftp://video-sav.epfl.ch/
Benutzername: sav
Passwort: savvas!1
In HTDOCS befindet sich der Ordner «Courtine». Bitte benutzen Sie einen FTP-Client für den Zugriff (Cyberduck oder Filezilla).
Kontakt:
Grégoire Courtine
Lehrstuhl der International Paraplegic Foundation (IRP) für Rückenmarkwiederherstellung
Tel. +41 21 693 8343
E-Mail: gregoire.courtine@epfl.ch
http://courtine-lab.epfl.ch

Nathalie Huber | idw
Weitere Informationen:
http://courtine-lab.epfl.ch
http://www.epfl.ch

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Die Gene sind nicht schuld
20.07.2018 | Technische Universität München

nachricht Staus im Gehirn: FAU-Forscher identifizieren eine Ursache für Parkinson
20.07.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics