Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

La-Ola-Wellen im Gehirn - Neuartiger Informationscode aufgedeckt

23.11.2011
Jülicher und Berliner Forscher haben herausgefunden, dass schleifenförmige Nervenzellverbände eine enorme Vielfalt von verschiedenen Mustern - und somit Informationscodes - bilden können.

Dabei stützt sich das Wissenschaftlerteam um Dr. Oleksandr Popovych auf mathematische Modelle. Sie sollen helfen, gesunde Aktivitätsmuster im lebenden Gehirn zu erkennen und neue Therapiewege für Parkinson oder Tinnitus zu erschließen. Die Ergebnisse erscheinen in der aktuellen Ausgabe der Zeitschrift Physical Review Letters.

Dr. Oleksandr Popovych vom Institut für Neurowissenschaften und Medizin des Forschungszentrums Jülich hat gemeinsam mit seinem Jülicher Kollegen Prof. Peter Tass und Dr. Serhiy Yanchuk vom Institut für Mathematik der Humboldt-Universität Berlin ein Computermodell entwickelt, das die Signalstärke und die Signalzeit innerhalb von Nervenzell-Schleifen variiert. Sie kamen so zu überraschenden Ergebnissen - beispielsweise, dass eine Erregungswelle trotz zuvor festgelegter Kreisrichtung rückwärts laufen kann.

Vereinfacht dargestellt ist eine Schleife aus Nervenzellen ein Kreis mit zum Beispiel zehn Teilnehmern. Teilnehmer eins gibt eine Information an Teilnehmer zwei weiter, Nummer zwei an Nummer drei und so weiter. Schließlich wandert die Information von Teilnehmer zehn wieder an Nummer eins. Ob die Information korrekt und schnell herumgereicht wird, hängt von den einzelnen Teilnehmern ab. Solche Schleifen sind grundlegende Strukturen im Gehirn - beispielsweise im motorischen System, bei dem mehrere Hirnareale in Schleifen eingebettet sind. Man geht davon aus, dass zum Beispiel die für die Bewegungskoordination notwendigen Informationen in derartigen Schleifen verarbeitet werden.

Gleichzeitig kann ein solcher Kreis Muster bilden - ähnlich einer La-Ola-Welle. Fassen sich alle Teilnehmer des Kreises an der Hand und reißen gleichzeitig die Arme in die Höhe, entsteht von außen betrachtet ein anderes Muster, als bei einer Aktion, bei welcher alle Teilnehmer nacheinander die Arme in einer Welle schwingen lassen. Je nach Rhythmus, Takt und Schwinghöhe können so ganz unterschiedliche Wellenmuster entstehen.

"Wir haben hierzu explizite mathematische Formeln entwickelt, die erklären, wie die Neuronen ihre Kopplungen, beziehungsweise Zeitverzögerungen verändern müssen, damit ganz konkrete Muster entstehen", erklärt Prof. Tass. Sein Fazit: "Schon ein elementarer und vergleichsweise einfacher Baustein im Nervensystem, nämlich eine gekoppelte und einfach gerichtete Schleife von Nervenzellen, kann eine unglaubliche Vielfalt von stabilen und dynamischen Mustern erzeugen, sie speichern und für Codierungszwecke verwenden."

Nervenzellen kommunizieren untereinander nicht durch direkten Kontakt, sondern durch das Ausschütten von biochemischen Botenstoffen - sogenannten Neurotransmittern. Wird an einer Kontaktstelle zwischen zwei Nervenzellen in kurzer Zeit viel Botenstoff ausgeschüttet, reagiert die nachfolgende Zelle mit einem starken elektrischen Impuls. Wenig Transmitter mit einer langsamen Übertragungsrate hat ein geringeres elektrisches Signal zur Folge. In einer Schleife ergibt sich folglich an jeder Verbindungsstelle die Möglichkeit, das Signal zu modulieren. So entsteht ein typisches zeitliches und räumliches Entladungsmuster der Gesamtschleife, also ein Code zum Beispiel für die Ausführung einer konkreten Bewegung.

"Für uns ist es wichtig, zu verstehen, wie vielfältig Informationsmuster im gesunden Gehirn abgebildet sind, um im Umkehrschluss therapeutische Ansätze für eine gestörte Kommunikation im Gehirn zu finden", betont Dr. Popovych. "Denn die krankhafte Synchronisation von Nervenzellverbänden findet sich beispielsweise bei Parkinson oder Tinnitus."

Bei diesen beiden Volksleiden soll das neue Modell in Zukunft u.a. eingesetzt werden zur Optimierung von therapeutischen Stimulationstechniken wie der "Coordinated Reset Neuromodulation". Diese Technik stört gezielt den ungewollten Gleichtakt der Nervenzellen, beispielsweise durch akustische oder elektrische Therapiesignale. So verlernt das Gehirn die krankhaften Synchronisationsvorgänge und wird in ein "gesundes Chaos" zurückgeführt. "Wir möchten mit dieser Therapie die gesunden Muster von Hirnaktivitäten und synaptischen Vernetzungen wiederherstellen und die physiologischen Vorgänge im Verlauf der Behandlung möglichst wenig stören", sagt Prof. Tass. "Hierfür sollten wir wissen, welche Palette an gesunden Mustern wir zu berücksichtigen haben", betont er. "Das neue mathematische Modell ist deshalb auch für unsere klinische Forschung ein wichtiger Meilenstein. Es kann uns helfen, therapeutische Ansätze wirksam und schonender für die Patienten zu gestalten", freut sich Dr. Popovych.

Weitere Informationen:

Forschungszentrum Jülich
www.fz-juelich.de
Institut für Neurowissenschaften und Medizin http://www.fz-juelich.de/inm/inm-7/DE/Home/home_node.html
Physical Review Letters
Vol. 107, Ausg. 22, 25.11.2011: "Delay- and coupling-induced firing patterns in oscillatory neural loops"

DOI: 10.1103/PhysRevLett.107.228102

online: http://link.aps.org/doi/10.1103/PhysRevLett.107.228102

Ansprechpartner:
PD Dr. Oleksandr Popovych
Institut für Neurowissenschaften und Medizin Neuromodulation (INM-7)
Tel.: 02461 61-6582
E-Mail: o.popovych@fz-juelich.de
Prof. Dr. Peter A. Tass
Institut für Neurowissenschaften und Medizin Neuromodulation (INM-7)
Tel.: 02461 61-8785
E-Mail: p.tass@fz-juelich.de
Pressekontakt:
Erhard Zeiss, Dr. Barbara Schunk
Tel. 02461 61-1841/-8031
E-Mail: e.zeiss@fz-juelich.de, b.schunk@fz-juelich.de
Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 700 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Erhard Zeiss | Forschungszentrum Juelich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Gangmessdaten visualisieren und analysieren
16.07.2018 | Fachhochschule St. Pölten

nachricht „Small meets smaller“ – Nanopartikel beeinflussen Schimmelpilzinfektion der Atemwege
05.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics