Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebsmedikament wird durch langsame Elektronen aktiviert

04.06.2019

In der Strahlentherapie werden verschiedene Moleküle erprobt, um die Wirkung der Strahlung auf Krebszellen zu verbessern. Forscher um Stephan Denifl von der Universität Innsbruck beobachteten nun, dass langsame Elektronen von Nimorazol-Molekülen äußerst effektiv eingefangen werden. Dieses Ergebnis kann eine Erklärung für die selektive Wirkung dieses in der Strahlentherapie bereits eingesetzten Wirkstoffs liefern.

Schon Anfang des 19. Jahrhunderts wurde vom Wiener Radiologen Gottwald Schwarz erkannt, dass der überlebenswichtige Sauerstoff in Zellen deren Schädigung durch Röntgenstrahlung fördert.


Durch Strahlung werden Strangbrüche in der DNA erzeugt. Das Nimorazol-Molekül dockt dort an, wo der DNA-Strang gebrochen ist und verhindert damit die Reparatur in der Krebszelle.

Rebecca Meissner

Durch diese Eigenschaft entsteht eine paradoxe Situation für die Bekämpfung von Krebstumoren in der Strahlentherapie, da Tumore aufgrund ihres enthemmten Wachstums Bereiche bilden, in denen eine ausgeprägte Sauerstoffarmut herrscht; diese Regionen sprechen aber durch den fehlenden Sauerstoff schlechter auf die Strahlung an als gesundes Gewebe.

Um diesen Effekt aufzuheben, werden in der Krebsmedizin verschiedene Moleküle getestet, welche die Wirkung von Sauerstoff in sauerstoffarmen Tumoren imitieren soll. Ein Molekül, das erfolgreich in klinischen Studien getestet wurde, ist das Nimorazol-Molekül.

Das in der Medizin sonst als Antibiotikum verwendete Medikament wird in Dänemark mittlerweile bei der Bekämpfung von Rachen- und Kehlkopftumoren in der Strahlentherapie eingesetzt. Der exakte Wirkungsmechanismus auf der molekularen Ebene ist allerdings unbekannt und beruht auf Hypothesen, die auf eine Bestätigung warten.

Moleküle fangen Elektronen ein

Die Innsbrucker Forscher untersuchten in Zusammenarbeit mit Forscherteams aus vier Ländern die Frage, ob langsame Elektronen, die durch die Bestrahlung im Tumorgewebe freigesetzt werden, eine Rolle für die Wirkung des Moleküls spielen. „Die Experimente mit einzelnen Molekülen zeigten, dass Nimorazol langsame Elektronen außergewöhnlich effizient einfängt.

Das Molekül zeichnet sich danach auch durch große Stabilität aus, indem es intakt bleibt“, erzählt Rebecca Meißner, die Erstautorin der in Nature Communications veröffentlichten Arbeit. „Sonst spalten Moleküle sich häufig auf, sobald ein freies Elektron eingefangen wird.“

In weiteren Experimenten haben die Wissenschaftler den Einfluss der Zellumgebung näherungsweise simuliert, indem sie Nimorazol mit Wassermolekülen umgaben. „Die Resultate zeigten, dass das Einfangen der Elektronen in dieser komplexeren Umgebung noch verstärkt wird“, schildert Projektleiter Stephan Denifl vom Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck.

Empfindlichkeit von Tumorgewebe steigern

Diese Ergebnisse liefern einen Hinweis, warum der Wirkstoff speziell zur Strahlentherapie von sauerstoffarmen Tumoren eingesetzt werden kann. Das Molekül mit dem eingefangenen Elektron stellt selbst ein Radikal dar, das sich an die durch Strahlung geschädigte DNA bindet und dadurch zelleigene Reparaturmechanismen in Tumorzellen verhindert.

In anderen Zellen, wo aber genügend Sauerstoff vorhanden ist, gibt das Nimorazol das eingefangene Elektron wieder an den Sauerstoff ab und wird dadurch recycelt. Damit ist eine Anreicherung des notwendigen Radikals in den sauerstoffarmen Zellen erzielbar und es wird die mangelnde Sensitivität gegenüber der Strahlung vermindert.

Diese Studie zeigt auch Perspektiven für das zukünftige Design von Molekülen auf, um die Sensitivität von Tumorgewebe zu verbessern. „Durch entsprechende Wahl der molekularen Struktur ließe sich die Effizienz des Elektroneneinfangens noch weiter optimieren“ meint Stephan Denifl. „Dabei dürfen aber natürlich auch nicht die biochemischen und pharmazeutischen Eigenschaften außer Acht gelassen werden.“

Der österreichische Wissenschaftsfonds FWF hat die Arbeit finanziell unterstützt.

Wissenschaftliche Ansprechpartner:

assoz. Prof. Dr. Stephan Denifl
Institut für Ionenphysik und Angewandte Physik
Universität Innsbruck
Telefon: +43 512 507-52662
E-Mail: stephan.denifl@uibk.ac.at
Web: https://www.uibk.ac.at/ionen-angewandte-physik/ag-denifl/

Originalpublikation:

Publikation: Low-energy electrons transform the nimorazole molecule into a radiosensitiser. Rebecca Meißner, Jaroslav Kočišek, Linda Feketeová , Juraj Fedor, Michal Fárník, Paulo Limão-Vieira, Eugen Illenberger & Stephan Denifl. Nature Communications 10, 2388 (2019)
DOI: 10.1038/s41467-019-10340-8; https://www.nature.com/articles/s41467-019-10340-8

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Digitaler Zwilling für personalisierte Medizin - Schick den Avatar zum Arzt
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Umfangreiche genetische Studie klärt Transformation von Vorleukämie zur vollständigen Leukämie auf
12.07.2019 | Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bessere Wärmeleitfähigkeit durch geänderte Atomanordnung

Die Anpassung der Wärmeleitfähigkeit von Materialien ist eine aktuelle Herausforderung in den Nanowissenschaften. Forschende der Universität Basel haben mit Kolleginnen und Kollegen aus den Niederlanden und Spanien gezeigt, dass sich allein durch die Anordnung von Atomen in Nanodrähten atomare Vibrationen steuern lassen, welche die Wärmeleitfähigkeit bestimmen. Die Wissenschaftler veröffentlichten die Ergebnisse kürzlich im Fachblatt «Nano Letters».

In der Elektronik- und Computerindustrie werden die Komponenten immer kleiner und leistungsfähiger. Problematisch ist dabei die Wärmeentwicklung, die durch...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: Nanopartikel mit neuartigen elektronischen Eigenschaften

Forscher der FAU haben Konzept zur Steuerung von Nanopartikeln entwickelt

Die optischen und elektronischen Eigenschaften von Aluminiumoxid-Nanopartikeln, die eigentlich elektronisch inert und optisch inaktiv sind, können gesteuert...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Neues Verfahren für den Kampf gegen Viren

Forschende der Fraunhofer-Gesellschaft in Sulzbach und Regensburg arbeiten im Projekt ViroSens gemeinsam mit Industriepartnern an einem neuartigen Analyseverfahren, um die Wirksamkeitsprüfung von Impfstoffen effizienter und kostengünstiger zu machen. Die Methode kombiniert elektrochemische Sensorik und Biotechnologie und ermöglicht erstmals eine komplett automatisierte Analyse des Infektionszustands von Testzellen.

Die Meisten sehen Impfungen als einen Segen der modernen Medizin, da sie vor gefährlichen Viruserkrankungen schützen. Doch bevor es ein Impfstoff in die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Testzone für die KI-gestützte Produktion

18.07.2019 | Veranstaltungen

„World Brain Day“ zum Thema Migräne: individualisierte Therapie statt Schmerzmittelübergebrauch

18.07.2019 | Veranstaltungen

Kosmos-Konferenz: Navigating the Sustainability Transformation in the 21st Century

17.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielfältiger einsetzbare Materialien

19.07.2019 | Biowissenschaften Chemie

Regulation des Wurzelwachstums aus der Ferne

19.07.2019 | Biowissenschaften Chemie

Bessere Wärmeleitfähigkeit durch geänderte Atomanordnung

19.07.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics