Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ergeht es einer einzelnen Netzhautzelle?

08.10.2013
Wissenschaftler der Universitäts-Augenklinik Bonn dringen in ein vollkommen neues Forschungsfeld vor: Sie entwickeln aus rund 1000 Einzelteilen ein Spezialmikroskop, das mithilfe eines Lasers einzelne Fotorezeptoren der Netzhaut im menschlichen Auge untersuchen und stimulieren kann.

Davon versprechen sich die Forscher neuartige Erkenntnisse zur Funktionsweise des Auges und zur Wirkweise von Medikamenten. Die neue Emmy-Noether-Forschergruppe – derzeit deutschlandweit die einzige in der Augenheilkunde – wird mit rund 1,6 Millionen Euro von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Das neuartige Instrument zur Untersuchung des menschlichen Auges ist eine Kombination aus einem Laser und einem sehr hochauflösenden Mikroskop, das einzelne Sinneszellen der Netzhaut abbilden kann. „Ein solches Gerät ist nicht auf dem Markt zu haben – ähnliche experimentelle Geräte gibt es bislang nur in Berkeley und Birmingham/Alabama in den USA“, sagt Dr. Wolf Harmening. Der Biologe mit ausgewiesenen Kenntnissen in Elektrotechnik ist Leiter der neuen Emmy-Noether-Nachwuchsgruppe „Neue adaptive Optiken für die ophthalmologische Bildgebung und Funktionsprüfung: Untersuchung visueller Funktion und Dysfunktion auf Einzelzellebene“ der Universitäts-Augenklinik Bonn.

In der Netzhaut befinden sich rund 130 Millionen Sinneszellen

Die Forschergruppe wird von der Deutschen Forschungsgemeinschaft (DFG) in den nächsten fünf Jahren mit rund 1,6 Millionen Euro gefördert. Ziel ist ein Mikroskop, in dem ein Laser-Lichtpunkt über die Netzhaut wandert und Bilder in bislang nicht gekannter Schärfe aufzeichnet. „Bislang wird von Patienten meist ein Bild von der gesamten Netzhaut aufgenommen“, sagt Dr. Harmening. „Wir möchten dagegen auf der Ebene einzelner Sinneszellen arbeiten.“ Die Herausforderung besteht darin, dass das Mikroskop für diesen Zweck mit einer ungewöhnlich großen optischen Auflösung arbeiten muss. Schließlich befinden sich auf der menschlichen Netzhaut, die etwas größer als eine Briefmarke ist, rund 130 Millionen Sinneszellen. Die kleinsten Rezeptoren haben einen Durchmesser von nur zwei Tausendstel Millimeter.

Ein flexibler Spiegel kompensiert Verzerrungen

Unregelmäßigkeiten der Linse und der Hornhaut des Auges verzerren aber das Bild. „Das verhält sich ganz ähnlich wie bei den Sternen am Nachthimmel: Weil die Atmosphäre die eigentlich punktförmigen Gebilde verzerrt, erscheinen sie gezackt und funkeln“, berichtet der Forschungsgruppenleiter. Aus der Astronomie haben die Wissenschaftler auch eine Methode übernommen, mit dem sich die Verzerrungen im Augenmikroskop kompensieren lassen. Sie messen die Abweichungen von der Idealform im Auge des Patienten auf den Tausendstel Millimeter genau. Ein flexibler Spiegel, der sich durch Aktuatoren verbiegen lässt, nimmt eine Form an, die diese Unregelmäßigkeiten im Auge genau kompensiert. Durch die Spiegelung wird die optische Abweichung aufgehoben, die einzelnen Sinneszellen der Netzhaut erscheinen gestochen scharf.

Wesentliche Impulse für Grundlagenforschung und Therapien

Mit dieser Technik erschließt sich ein vollkommen neues Feld in der Erforschung des menschlichen Auges: Wie ergeht es einer einzelnen Netzhautzelle, und wie trägt sie zum Seheindruck bei? Durch die Stimulation bestimmter Fotorezeptoren können die Wissenschaftler die Funktionsweise der Netzhaut grundlegend untersuchen: Was sieht ein Proband, wenn eine bestimmte Sinneszelle angeregt wird? Darüber hinaus lässt sich mit dem neuartigen Mikroskop auch die Wirkung vieler Therapien testen: Wie reagiert eine Netzhautzelle auf ein bestimmtes Medikament oder ein konkrete Behandlung? „Dieses innovative Bildgebungsverfahren mit funktioneller Kopplung kann nicht nur weiterführende Erkenntnisse bezüglich des natürlichen Verlaufs von potentiellen zur Erblindung führenden Netzhauterkrankungen liefern, sondern auch pharmakologische, stammzellbasierte oder gentherapeutische interventionelle Studien ermöglichen“, sagt Prof. Dr. Frank Holz, Direktor der Universitäts-Augenklinik Bonn.

Biologe mit Expertise in Elektrotechnik

Der 35-Jährige leitet die neue Emmy-Noether-Gruppe an der Universitäts-Augenklinik seit Anfang August. Mit dem Emmy-Noether-Programm möchte die DFG jungen Nachwuchswissenschaftlern einen Weg zu früher wissenschaftlicher Selbstständigkeit eröffnen. Dr. Harmening machte sein Diplom in Biologie an der RWTH Aachen und belegte nebenbei noch Elektrotechnik. Nach seiner Promotion war er Wissenschaftlicher Assistent in der Tierphysiologie an der RWTH. An der University of California in Berkeley (USA) konzentrierte er sich auf die Erforschung des menschlichen Auges. Dr. Harmening ist verheiratet und hat zwei Söhne.

Kontakt für die Medien:

Dr. Wolf Harmening
Universitäts-Augenklinik Bonn
Tel. 0228/28715882
E-Mail: wolf.harmening@ukb.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Aussicht auf neue Therapie bei rheumatoider Arthritis
21.08.2018 | Charité – Universitätsmedizin Berlin

nachricht Weiterer Schritt im Kampf gegen Lungenkrebs
21.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Superauflösende Mikroskopie - Neue Markierungssonden im Nanomaßstab

21.08.2018 | Physik Astronomie

Browser-Plugin für mehr Internet-Sicherheit

21.08.2018 | Informationstechnologie

Aussicht auf neue Therapie bei rheumatoider Arthritis

21.08.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics