Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Epigenetik verbessert Tumorforschung: Wie „Software-Fehler“ zu Krebs führen

31.08.2012
Laborärzte und Klinische Chemiker setzen auf Epigenetik zur Verbesserung der Tumorforschung
Nicht nur Mutationen in den Genen, also im Erbgut selbst, sind für die Entstehung von Tumoren verantwortlich. Auch Veränderungen des sogenannten „epigenetischen Codes“, der für das An- und Abschalten der Gene mitverantwortlich ist, können das ungehinderte Wachstum von bösartigem Gewebe vorantreiben.

„In der Früherkennung und Behandlung von Krebserkrankungen werden solche „Software-Fehler“ im Erbgut in Zukunft an Bedeutung gewinnen“, erklären Experten im Vorfeld der 9. Jahrestagung der Deutschen Vereinten Gesellschaft für Klinische Chemie und Laboratoriumsmedizin (DGKL) vom 26. bis zum 29. September 2012 im Congress Centrum Rosengarten in Mannheim.
„Die Entschlüsselung des menschlichen Genoms hat bei vielen Menschen die Hoffnung geweckt, mit diesen Informationen die Grundlagen von Krebserkrankungen verstehen und Krebs präventiv behandeln zu können“, erläutert Dr. rer. nat. Sonja Stadler vom Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik am Universitätsklinikum Leipzig. Doch tatsächlich nutze die alleinige Kenntnis der DNA-Sequenzen bis heute kaum dazu, einer Krebserkrankung vorzubeugen oder diese zu therapieren. „Bis heute können wir die DNA-Sequenz nicht reparieren“, so die Expertin.

Möglicherweise müssten Biomediziner an anderen molekularen Zellbausteinen ansetzen, um der Entstehung von Krebs auf die Spur zu kommen. Wie zahlreiche Forschungsarbeiten in den letzten Jahren gezeigt haben, sind neben Genmutationen auch sogenannte „epigenetische“ Veränderungen dafür verantwortlich, dass die Teilungsmechanismen einer Zelle außer Kontrolle geraten und sich ein Tumor bildet. „Biochemisch betrachtet, handelt es sich um die Anlagerung von beispielsweise Methyl,- Acetyl- oder auch Phosphatgruppen an das Chromatin, die somit einzelne Gene aus- oder anschalten“, erklärt Dr. Stadler.
Der epigenetische Code steuert in einer Zelle, welche Genabschnitte abgelesen werden und welche nicht. Nur so ist erklärbar, weshalb eine Nervenzelle ganz anders aussieht als eine Muskelzelle, obwohl beide Zellen über genau die gleiche Erbinformation verfügen. „Betrachtet man den genetischen Code als Hardware einer Körperzelle, so ist der epigenetische Code die Software“, erklärt Dr. Stadler.

Genau wie die Gene selbst können epigenetische Muster bei der Zellteilung an die Tochterzellen weitergegeben werden. Im Gegensatz zu den Genen können Lebewesen jedoch bestimmte epigenetische Zellmuster auch erwerben, etwa durch die Ernährung als Fötus während der Schwangerschaft, Umweltgifte oder Radioaktivität. „Eine mögliche Folge epigenetischer Abweichungen ist eine Krebserkrankung“, erläutert Dr. Stadler. Zum Krebs komme es beispielsweise, wenn ein epigenetischer Fehler Gene ausschaltet, die normalerweise verhindern, dass sich gesunde Körperzellen in Krebszellen verwandeln.

Epigenetische Veränderungen in Krebszellen wurden bereits in den 1980er-Jahren entdeckt. „Doch erst in letzter Zeit wird ihre Bedeutung für die Krebsentstehung besser verstanden“, so die Leipziger Expertin. Als Beispiel für das enge Zusammenspiel von Genen und Epigenetik nennt die Molekularbiologin das Gen ARID1A, das bei Krebserkrankungen der Eierstöcke häufig mutiert ist. ARID1A ist nicht direkt an der Tumorentstehung beteiligt. Es enthält aber die genetische Information für einen Eiweißkomplex, der sich an den Chromosomen anlagert und dadurch – epigenetisch – bestimmt, welche Gene abgelesen werden und welche nicht.

Wesentliche epigenetische Veränderungen können heute experimentell im Labor nachgewiesen werden und damit in Zukunft auch als potentielle Biomarker in der Krebsfrüherkennung herangezogen werden, hofft Dr. Stadler. Auch die Krebstherapie kann langfristig von den Erkenntnissen der Epigenetik profitieren. In der Entwicklung seien Medikamente, die die Anlagerung von Methylgruppen an die DNA verhindern. Wenn man verhindern kann, dass die falschen Gene abgeschaltet werden und es zu einem verhängnisvollen „Software-Fehler“ kommt, würde der Krebserkrankung vorgebeugt.

Terminhinweise:

9. Jahrestagung der Deutschen Vereinten Gesellschaft für Klinische Chemie und Laboratoriumsmedizin (DGKL) DGKL vom 26. bis zum 29. September 2012
Congress Centrum Rosengarten, Rosengartenplatz 2, 68161 Mannheim

Pressekonferenz der DGKL
Termin: Donnerstag, 27. September 2012, 12.00 bis 13.00 Uhr
Ort: Raum Frédéric Chopin, Dorint Kongresshotel Mannheim, Friedrichsring 6, 68161 Mannheim

Sitzung: Epigenetik und Tumorerkrankungen
Termin: Donnerstag, 27.9.2012, 15.00 bis 16.30
Ort: Raum Gustav Mahler 1, Congress Centrum Rosengarten, Rosengartenplatz 2, 68161 Mannheim

Kontakt für Journalisten:
Pressestelle DGKL-Jahrestagung 2012
Dagmar Arnold
Postfach 30 11 20
70451 Stuttgart

Berliner Büro:
Langenbeck-Virchow-Haus
Luisenstraße 59
10117 Berlin

Tel.: 0711 8931656-380
Fax: 0711 8931-167
E-Mail: arnold@medizinkommunikation.org

| idw
Weitere Informationen:
http://www.dgkl.de
http://www.dgkl2012.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung
12.12.2019 | Wilhelm Sander-Stiftung

nachricht Forscher untersuchen Rolle der Zellmembran bei der Entstehung chronischer Krankheiten
10.12.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Hefe-Spezies in Braunschweig entdeckt

12.12.2019 | Biowissenschaften Chemie

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics