Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein bösartiges Netzwerk macht Hirntumore resistent gegen Therapie

09.11.2015

Glioblastome sind die bösartigsten unter den Hirntumoren. Ärzte und Wissenschaftler unter Federführung der Klinischen Kooperationseinheit Neuroonkologie des Deutschen Krebsforschungszentrums und des Universitätsklinikum Heidelberg beschreiben nun in der Zeitschrift Nature, dass die Glioblastomzellen untereinander durch lange Zellfortsätze verbunden sind. Die Krebszellen kommunizieren über diese Verschaltung und schützen sich dadurch vor therapiebedingten Schäden. Blockierten die Forscher die Netzwerk-Bildung, so drangen die Krebszellen weniger invasiv in das Gehirn ein und sprachen besser auf die Strahlenbehandlung an.

Hirntumoren aus der Gruppe der unheilbaren Astrozytome, zu denen auch die besonders bösartigen Glioblastome zählen, wachsen wie ein Pilzmyzel diffus in das gesunde Gehirn ein. Daher lassen sie sich durch eine Operation nicht vollständig entfernen und wachsen trotz intensiver Therapie weiter – sie besitzen offenbar wirksame Resistenzmechanismen.


3D-Darstellung eines Glioblastoms: Vernetzte Krebszellen (blau) sind über lange Membranfortsätze (pink) miteinander verbunden. Unvernetzte Tumorzellen sind dunkelgrau, Membranfortsätze, die keine Zellen verbinden, hellgrau dargestellt. (M. Osswald/DKFZ).

Wissenschaftler um Frank Winkler von der Neurologischen Universitätsklinik Heidelberg und vom Deutschen Krebsforschungszentrum beschreiben in ihrer aktuellen Arbeit eine verblüffende Eigenschaft der Astrozytomzellen: Sie bilden extrem dünne und lange Fortsätze ihrer Zellmembran aus, mit denen sie das gesunde Gehirn durchdringen, es ständig abtasten, und schließlich kolonisieren.

Mit zunehmendem Tumorwachstum verbinden sich die Krebszellen mit diesen Fortsätzen zu einem großen Netzwerk. In diesem Netzwerk kommunizieren sie so intensiv über so lange Distanzen, dass man Astrozytome als hochkomplexe, organähnliche Strukturen verstehen kann. „Unser erster Gedanke war: das sieht ja aus wie die Neubildung eines Gehirns im bestehenden Gehirn", berichtet Frank Winkler. „Die Tumorzellen waren stark untereinander vernetzt, so wie wir das von Nervenzellen im Gehirn kennen.“

Die Forscher beobachteten bis über ein Jahr hinweg das Wachstum menschlicher Glioblastome, die sie auf Mäuse übertragen hatten. Sie nutzten dazu eine spezielle Mikroskopietechnik, die Einblicke in tiefe Zonen des Gehirns ermöglicht. So fanden sie heraus, dass die Tumorzellen Moleküle über die Membranschläuche austauschten und sie darüber hinaus als Kommunikationskanäle nutzen.

Auch im Gewebe von Hirntumor-Patienten entdeckten die Forscher das Netzwerk aus Membranfortsätzen. Je vernetzter die Krebszellen waren, desto bösartiger und resistenter war der Hirntumor-Typ.

Die Wissenschaftler vermuteten daher rasch, dass die Netzwerke aus Membranfortsätzen mit der Therapieresistenz im Zusammenhang stehen müssen. Tatsächlich erkennen die Tumore eine Schädigung des Netzwerks und reparieren es umgehend. Eine Bestrahlung – die Standardtherapie beim Glioblastom – überleben vor allem diejenigen Tumorzellen, die Teil des Netzwerkes sind, unvernetzte Krebszellen dagegen sterben.

Wie kommen die Tumorzellen zu ihren ungewöhnlichen Membranfortsätzen? Einen Hinweis darauf ergab die Analyse der Genaktivitäten von 250 Hirntumorpatienten. Die Krebszellen missbrauchen bestimmte molekulare Signalwege, die normalerweise an der frühen Entwicklung des Nervensystems beteiligt sind, für ihre Vernetzung. Nach einer experimentellen Blockade dieser Signalwege entwickelten die Mäuse geringer vernetzte kleinere Tumoren, die sehr stark auf Strahlentherapie ansprachen.

„Die Resistenz der Astrozytome, insbesondere der Glioblastome, gegen alle Therapieformen ist ein enormes Problem. Unsere Ergebnisse zeigen uns erstmals einen lang gesuchten neuen Ansatz auf, diese Resistenz zu brechen, um die Tumoren zukünftig möglicherweise besser behandeln zu können. Zudem zeigen die Ergebnisse, warum eine molekular definierte Subgruppe von Hirntumoren deutlich stärker von der Therapie profitiert. Bei ihnen scheint die Möglichkeit zur Netzwerkbildung begrenzt zu sein“, sagt Wolfgang Wick, Leiter der Klinischen Kooperationseinheit und der Neurologischen Universitätsklinik Heidelberg.

Matthias Osswald, der Erstautor der Arbeit, ergänzt: „Auch wenn wir mit dieser Entdeckung unseren Hirntumorpatienten noch nicht unmittelbar helfen können, wissen wir doch zumindest, in welche Richtung künftige Therapien entwickelt werden sollten: Wir müssen das bösartige Netzwerk zerstören."

Matthias Osswald, Erik Jung, Felix Sahm, Gergely Solecki, Varun Venkataramani, Jonas Blaes, Sophie Weil, Heinz Horstmann, Benedikt Wiestler, Mustafa Syed, Lulu Huang, Miriam Ratliff, Kianush Karimian Jazi, Felix T. Kurz, Torsten Schmenger, Dieter Lemke, Miriam Gömmel, Martin Pauli, Yunxiang Liao, Peter Häring, Stefan Pusch, Verena Herl, Christian Steinhäuser, Damir Krunic, Mostafa Jarahian, Hrvoje Miletic, Anna S. Berghoff, Oliver Griesbeck, Georgios Kalamakis, Olga Garaschuk, Matthias Preusser, Samuel Weiss, Haikun Liu, Sabine Heiland, Michael Platten, Peter E. Huber, Thomas Kuner, Andreas von Deimling, Wolfgang Wick und Frank Winkler: Brain tumor cells interconnect to a functional and resistant network. Nature 2015, DOI: 10.1038/nature16071

Link zum Kommentar in Nature (“News and Views”): http://www.nature.com/nature/journal/vaop/ncurrent/full/nature15649.html

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Gemeinsame Pressemitteilung des Deutschen Krebsforschungszentrums und des Universitätsklinikums Heidelberg

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de

Weitere Informationen:

http://www.dkfz.de

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Zwei Städte, ein Operationstisch
17.10.2018 | Otto-von-Guericke-Universität Magdeburg

nachricht Antiblockiersystem in Arterien schützt vor Herzinfarkt
16.10.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics