Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eileiter in der Petrischale

28.12.2015

Max-Planck-Forscher züchten aus Stammzellen Schleimhaut menschlicher Eileiter

Modellsysteme helfen Wissenschaftlern die Funktionsweise von Zellen, Geweben oder Organen zu untersuchen. Für solche Labormodelle und ihre natürlichen Gegenstücke gilt dabei: Je ähnlicher desto besser. Forscher vom Max-Planck-Institut für Infektionsbiologie in Berlin haben nun die innerste Schicht des menschlichen Eileiters – eine Schleimhaut mit Falten und Furchen – im Labor wachsen lassen.


Mithilfe von Stammzellen in der Petrischale gezüchtetes Eileiter-Epithel.

© MPI f. Infektionsbiologie


Grafische Darstellung eines Organoids des Eileiter-Epithels. Die Zellschicht weist wie bei einem natürlichen Eileiter verschiedene Zelltypen auf, darunter Zellen mit Flimmerhärchen (gelb).

© MPI f. Infektionsbiologie

Aus Stammzellen entwickelten sich nicht nur die Zelltypen, die in dieser Schleimhaut vorkommen, sondern auch Merkmale des ganzen Organs wie seine charakteristische Architektur. In ihrem Labormodell haben die Forscher zwei Signalwege entdeckt, die ausschlaggebend für ein konstantes Wachstum sind.

Zusätzlich konnten sie indirekt zeigen, dass die Eileiterschleimhaut eigene Stammzellen besitzt, die zu einer ständigen Erneuerung führen. Aufgrund ihren Erkenntnissen und der Möglichkeit, den künstlichen Eileiter im Labor ausgiebig zu erforschen, möchten die Wissenschaftler etwa den Verlauf von Infektionen und die Entstehung von Eierstockkrebs besser verstehen.

Eileiter sind Teil der weiblichen Geschlechtsorgane. Wie zwei etwa zehn bis 15 Zentimeter lange Schläuche verbinden sie die Eierstöcke mit der Gebärmutter und ermöglichen so den Transport der reifen Eizelle in den Uterus. Sie sind also für eine erfolgreiche Fortpflanzung unverzichtbar.

„Eileiter können allerdings dauerhaft von Bakterien besiedelt werden“, erklärt Thomas F. Meyer, Leiter der Studie und Direktor am Max-Planck-Institut für Infektionsbiologie. Folglich sind sie häufig Ursprung von Infektionen, die etwa zu einem Verschluss der Leiter und schlimmstenfalls zu Unfruchtbarkeit führen können.

„Neuere Erkenntnisse aus der Krebsforschung legen außerdem nahe, dass entartete Zellen aus den Eileitern in die Eierstöcke wandern“, fügt Meyer hinzu. Die Folge kann ein so genanntes Orvinalkarzinom sein, die tödlichste Form gynäkologischer Krebserkrankungen. Es gibt Hinweise darauf, dass Bakterien an der Entstehung dieser Krebsform beteiligt sind, belegt ist dies jedoch noch nicht.

Ärzte haben bislang kaum Möglichkeiten, das Innere der Eileiterröhren ihrer Patientinnen zu untersuchen. Dementsprechend werden Erkrankungen in diesem Bereich häufig erst im fortgeschrittenen Stadium diagnostiziert – und dann ist es oft zu spät für eine erfolgreiche Therapie. Auch ist es im Labor schwierig, Eileiter-ähnliche Bedingungen zu erzeugen. Die innere Schleimhaut der Eileiter, die Epithelzellschicht, ist dabei von besonderem Interesse, denn hier nehmen die Infektionen oder der Krebs oftmals ihren Anfang.

Das Team um Meyer hat in Zusammenarbeit mit Ärzten der Klinik für Gynäkologie der Charité in Berlin nun eine neue Methode entwickelt, diese innere Zellschicht im Labor wachsen zu lassen. Aus Eileiterproben von Spenderinnen haben sie Epithelzellen mit potenziellen Stammzelleigenschaften entnommen und kultivierten diese unter bestimmten Umgebungsbedingungen. Aus nur wenigen Zellen bildeten sich einzelne Hohlkugeln bestehend aus vielen tausend Zellen, so genannte Organoide. „Das geschah ganz ohne zusätzliche Instruktion. Der gesamte Bauplan des Eileiters ist also in den Epithelzellen gespeichert“, erläutert Meyer.

Die Anatomie, Struktur und die biochemischen Vorgänge in den Organoiden waren dabei denen eines echten Eileiters sehr ähnlich: „Die künstlichen Nachbildungen bestanden neben den Stammzellen auch aus Zellen mit Flimmerhärchen und sekretorischen Zellen, die alle wie in natürlichen Eileitern angeordnet waren“, so Meyer. Außerdem reagiert der künstlicher Eileiter auf die Zugabe von Hormonen zur Nährflüssigkeit. Diese und weitere übereinstimmende Merkmale beweisen, dass die verwendeten Ausgangszellen das Potential haben, zu spezialisierten Zellen auszureifen.

Die Wissenschaftler untersuchten zudem, wie die künstliche Schleimhaut entwickelt. Demnach steuern zwei Signalwege, dass ein einem echten Eileiter ähnliches Organoid entsteht: Notch und Wnt. Sie ermöglichen es den Zellen, auf äußere Signale zu reagieren. Insbesondere bei dem Aufbau von Gewebe im Embryo spielen beide eine wichtige Rolle. Je nach Entwicklungsstadium hemmen oder stimulieren sie beispielsweise weitere Veränderung der Zellen.

Die Forscher züchten die Organoide inzwischen über ein Jahr im Labor ohne merkliche Veränderungen. „Das ist ein großer Vorteil gegenüber entnommenen Eileitern. Deren Gewebe stirbt nach kurzer Zeit das Gewebe ab, denn die Sauerstoff- und Nährstoffversorgung funktioniert dann nicht mehr“, sagt Meyer.

Das Organoid kann hingegen Wissenschaftlern über einen langen Zeitraum als Forschungsobjekt dienen.

Die Berliner Wissenschaftler erhoffen sich über diese ersten Ergebnisse hinaus neue Einsichten in grundlegende Mechanismen der Fortpflanzung oder der Krankheitsentstehung im Eileiter. „Mit unserem Modell können wir jetzt gezielt erforschen, ob Infektionen des menschlichen Eileiters und dem Auftreten von Krebs auslösen können“, sagt Meyer.


Ansprechpartner

Prof. Dr. Thomas F. Meyer
Max-Planck-Institut für Infektionsbiologie, Berlin

Telefon: +49 30 28460-400

Fax: +49 30 28460-401

E-Mail: meyer@mpiib-berlin.mpg.de


Dr. Sabine Englich
Max-Planck-Institut für Infektionsbiologie, Berlin
Telefon: +49 30 28460-142

E-Mail: englich@mpiib-berlin.mpg.de


Originalpublikation
Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, Berger H, Mollenkopf HJ, Mangler M, Sehouli J, Fotopoulou C, Meyer TF

The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids.

Nat Commun. 2015 Dec 8;6:8989. doi: 10.1038/ncomms9989

Prof. Dr. Thomas F. Meyer | Max-Planck-Institut für Infektionsbiologie, Berlin

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht MHH-Forscher entdeckt: Ein Muskelprotein hilft bei der Eizellteilung
14.10.2019 | Medizinische Hochschule Hannover

nachricht Forscher entschlüsseln Wirkung von Ebola-Impfstoff - Virologen der Uniklinik Köln identifizieren neue Antikörper
08.10.2019 | Uniklinik Köln

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics